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*  Late	  80s	  …	  cheap	  microprocessors,	  no	  applications	  
− But	  had	  brought	  millions	  of	  pcs	  to	  business/home	  

*  Late	  90s	  …	  end	  of	  the	  dot-‐com	  boom	  
− But	  the	  Internet	  infrastructure	  was	  built	  for	  most	  
* Early	  2010s	  …	  peak	  of	  the	  social	  boom	  

− Facebook	  3rd	  “country”,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Tech	  Bubbles:	  what	  they	  produce?	  



	  
What	  are	  we	  building	  for	  the	  next	  generation?	  
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Today	  

“The	  bes
t	  mind	  of	  m

y	  genera
tion	  are	  

thinking
	  about	  

how	  to	  make	  peop
le	  click	  a

ds.”	  J.	  H
ammerbache

r	  

“This	  Tech	  Bubble	  Is	  Different.”	  	  
A.	  Vance,	  Businessweek,	  04/17/2011	  
	  



* The	  next	  generation	  could	  be	  the	  one	  with	  access	  
to	  an	  unprecedented	  amount	  of	  behavioral	  data	  
* This	  can	  solve	  real	  problems	  
…	  not	  just	  finding	  a	  movie	  or	  a	  restaurant!	  
− ensuring	  energy	  efficiency	  
− monitoring	  our	  environment	  
− extend	  access	  to	  infrastructure	  
−  informing	  public	  decision	  
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Social	  Media	  &	  Computing	  



And	  key	  to	  our	  society’s	  future!	  
	  
	  
	  
	  

Who	  produces	  this	  oil?	  	  	  	  
Who	  owns	  it?	  benefits	  from	  it?	  
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“Data	  is	  web’s	  new	  oil”	  

De	  facto,	  you	  are	  Goog
le’s	  product!”	  

	  	   	  S.	  Vaidhyanathan	  (201
1)	  

“You	  think	  you	  are	  Goo
gle’s	  customer?	  
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We	  have	  a	  problem	  …	  

“Privacy	  challe
nges	  do	  not	  an

d	  must	  not	  require
	  us	  to	  

forego	  the	  be
nefits	  of	  Netw

ork	  and	  Inform
ation	  Technolo

gy	  

(NIT)	  in	  addre
ssing	  national

	  priorities.	  	  

Rather,	  we	  need	  a	  pract
ical	  science	  of

	  privacy	  prote
ction,	  

based	  on	  fund
amental	  advance

s	  in	  NIT,	  to	  pro
vide	  us	  with	  

tools	  we	  can	  use	  to	  re
concile	  privac

y	  with	  progress.”
	  	  

PCAST	  Report
	  to	  the	  Preside

nt	  and	  Congre
ss,	  	  

Designing	  a	  Dig
ital	  Future	  



* Transactional	  Privacy,	  a	  primer	  
− Need	  for	  alternative	  economic	  approach	  to	  privacy	  
	  
* Highlights:	  
− Can	  we	  practically	  build	  TP?	  
− The	  real	  reasons	  why	  it	  may	  not	  work	  
− Can	  it	  be	  incrementally	  deployed?	  

* Concluding	  remarks	  
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This	  talk	  



The	  Privacy	  Tussle	  

Online	  Service	  Providers,	  
Data	  Brokers,	  Aggregators	  

More	  monetization	  of	  
personal	  information	  

Users,	  Associations,	  	  
Journalists,	  governments	  

Stop	  the	  erosion	  of	  privacy?	  
Regulate?	  
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* No	  limitation	  on	  3rd	  party	  tracking	  
− Permission	  ultimatum	  (Android,	  FB,	  Apple)	  
− Aggregation	  (Re-‐targering,	  FB	  connect,	  quasi-‐logout)	  
− Reselling	  (Rapleaf,	  bluekai,	  Google	  DDP)	  

* Privacy	  is	  difficult	  to	  perceive	  and	  to	  protect	  
− Behavioral:	  Immediate	  gratification,	  illusion	  of	  control	  
− Technical:	  inference	  (e.g.	  differential	  privacy)	  
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What	  complicates	  the	  Tussle	  



* Privacy	  preserving	  techniques	  
− Anonymization:	  Tor,	  Obfuscation:	  TrackMeNot	  
− Self-‐destructing	  data:	  Vanish	  
− Monitoring:	  Dynamic	  Taint	  Analysis	  
− Privacy-‐Preserving	  services:	  AdNostic,	  Privad,	  Repriv	  

	  
* Not	  adopted,	  for	  2	  reasons:	  	  
1.  little	  user	  incentive,	  “privacy	  is	  not	  enough”	  
2.  Ignores	  data’s	  value,	  “really	  socially	  optimal?”	  
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Technical	  solutions	  
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Fix	  the	  economy	  first!	  

By:	  You	  



* Principle	  1:	  A	  relaxed	  definition	  of	  privacy	  
−  Is	  privacy	  the	  state	  of	  being	  free	  from	  observation?	  	  	  
…	  or	  know	  and	  control	  who	  uses	  what	  about	  you?	  

− We	  do	  not	  hide	  data,	  rather	  we	  enforce	  payment	  for	  
their	  commercial	  use.	  

* Principle	  2:	  A	  separation	  of	  powers	  
− Who	  should	  decide	  what?	  
− User	  “what	  is	  for	  sale?”	  
market	  “what	  is	  it	  worth?”	  
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Transactional	  Privacy	  in	  a	  nutshell	  



Privacy	  as	  usual	  vs.	  Transactional	  Pr.	  

Goal:	  free	  from	  observation	  
*  Adversary:	  
honest	  but	  curious	  

*  Hard	  problem,	  requires	  
−  data	  through	  queries	  
−  Estimate	  privacy	  violation	  

as	  negative	  externalities	  

*  Many	  source	  of	  leakage	  
−  reselling	  
−  from	  price	  and	  bids	  

Goal:	  free	  from	  exploitation	  
*  Adversary:	  
malicious	  but	  rational	  

*  Potentially	  easier	  
−  raw	  data	  

works	  with	  any	  algorithm	  
−  simpler	  

*  Inference	  is	  mostly	  useless	  
−  Brings	  no	  additional	  value	  
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1.  Provide	  the	  right	  incentive	  to	  users	  	  
−  A	  perception	  of	  their	  data	  value	  
−  Information	  leakage	  =	  market	  arbitrage	  

2.  Improve	  the	  new	  data	  economy	  
−  More	  transparent:	  give	  user	  a	  control	  
−  More	  democratic:	  let	  the	  best	  tech	  (not	  data)	  win!	  
−  More	  efficient?	  Avoid	  public	  campaigns,	  more	  data	  

15	  

Economic	  solution	  to	  privacy	  

Google’s	  
“Good	  to

	  know”	  ~	  10m	  

Google	  Lo
bby	  +240

%	  in	  2012	  	  

	  

The	  price	  of	  free	  	  
https://github.com/ManConley/Price-‐of-‐Free/	  
	  
	  

Nice	  but	  is	  it	  practic
al?	  



* Transactional	  Privacy,	  a	  primer	  
− Need	  for	  alternative	  economic	  approach	  to	  privacy	  
	  
* Highlights:	  
− Can	  we	  practically	  build	  TP?	  
− The	  real	  reasons	  why	  it	  may	  not	  work	  
− Can	  it	  be	  incrementally	  deployed?	  

* Concluding	  remarks	  
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This	  talk	  



TP	  for	  web-‐browsing	  
1.  Data	  protection	  

Mix	  network	  anonymize	  
{	  IP	  address	  +	  cookies	  }	  

2.  Data	  to	  sale+	  Pricing	  
unlim.	  supply	  auction	  

3.  Revelation	  

Only	  those	  who	  paid	  can	  
access	  the	  users	  identity	  
during	  an	  impression	  
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* We	  don’t	  protect	  to	  protect,	  we	  protect	  to	  sell	  later	  
− Enough	  to	  make	  misbehavior	  economically	  inefficient	  

* What	  to	  sell?	  The	  really	  simple	  user	  Interface	  
− How	  much	  do	  you	  value	  	  
this	  bit?	  TOO	  HARD	  

− Would	  you	  put	  this	  bit	  on	  	  
the	  market?	  A	  BIT	  EASIER	  

− Tune	  a	  simple	  scroll	  bar	  
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1.	  How	  to	  protect	  data?	  

Figure 2: Fraction of time spent by user per
site (x-axis) vs. Normalized popularity of sites
(y-axis)

a high variance in terms of visits; a long-tail, which has
been observed before in related data [5]. The power law
fits with exponent 1.5 for mobile browsing passed the
Kolmogrov-Smirnov test [3].

For every user, we calculate the fraction of time (in
terms of visits) spent on each of the visited sites. For
each site she visits, we plot her fraction of time spent
on that site versus the global popularity of that site
(normalized by the most popular site, facebook.com)
in Fig. 2. We posit that high values on the x-axis and
low values on the y-axis relate to sensitive information.
For example, we found that URLs occupying this can
be either highly regional, sarbast.net or related to a
health condition breastcancer.com, pertaining to sen-
sitive information [9].

Sample application: Online Coupons
Companies use coupons as a form of price discrim-

ination, that are made more effective with access to
PII [14]. Online coupon companies like Groupon have
become highly popular and aggregators have shown in-
terests to enter this market9. In order to study a user’s
potential revenue as given by the auction, we use the
browsing data and proceed as follows:

(i) For each user, we categorize the URLs of the sites
they visited using Alexa.com, which provides the top
500 sites for each category. We filter out visits to ad
(i.e. Doubleclick, Admob, etc.), analytics, and adult
sites to lower any bias.

(ii) We assume that the bidders involved are online
coupon vendors and each vendor bids for one category.
We found 32 Alexa categories that overlapped with on-
line coupon categories.

(iii) We monitored yipit.com, an online coupon ag-
gregator, over three days (July 17-20, 2011) to obtain
mean value per deal in each category. We then assume
that each user has a likelihood of making a purchase

9Facebook jumps into crowded coupon market,
http://goo.gl/oLrJy

in a category proportional to the fraction of time spent
browsing in that category. Thus, the bid values are the
mean deal value for a category multiplied by this frac-
tion. The categories Travel and Office Products had
the highest mean values of $844.14 and $207.9.

(iv) For multiple users, we vary the amount of infor-
mation they reveal. The disclosure strategy is described
in Sec. 2, where we release sites in order of popularity
from highest to lowest. We release information in blocks
of 1% of the volume each time.

(v) For every release, we calculate a set of bids. The
majority of high bids came from four yipit categories:
computers, home, entertainment, kids and teens.

We pick 4 typical users who have high to middle-level
activity and plot (Fig. 3(a)) the optimal revenue they
stand to gain as a function of every information release.
We obtain the optimal revenue assuming bidders are
honest about their valuations. For all of these users, we
observe that there is initially a steep increase in rev-
enue with a little disclosure of information, followed by
diminishing return as more PII is released. This shows
that sensitive information (as given by popularity) is
not needed for maximizing revenues. To study enforce-
ment of truth telling in the auction, we plot (Fig. 3(b))
the result of running the auctions for different values of
ε. Note that smaller values of ε enforce truth-telling.
We find that the value of ε has little or no effect on the
results (qualitatively).

4. PERSONAL INFORMATIONMARKET
For TP to be effective, we develop a system that cur-

tails the leakage of information and prevents identifi-
cation while browsing. This system should allow users
access to all content without being tracked by aggrega-
tors while imposing a minimum overhead; we note that
it would be impossible to prevent all types of informa-
tion gathering methods. By raising the bar high enough
for information aggregators, we believe they will find it
cheaper and more convenient to come to the market.

System Description: The full architecture is shown
in Fig. 4, with the main additions being a component
responsible for transactional privacy and anonymizing
proxies in the middle, operated by the trusted third
party. At the browser end, a lightweight plugin pro-
vides the following functionality: (i) opts-out users of
ad-networks and activates Do-not-track10, showing in-
tent, (ii) provides the user with a mechanism to help
them decide which URLs they are willing to put on the
market, (iii) prevents leakage (3rd party cookies, super
cookies, flash cookies, 1-pixel bugs, etc.) [9], (iv) helps
manage multiple users accessing the same device – pro-
vides profiles with personalized settings for each user.

For an opt-in user Alice, the operations that take
place for Web browsing are as follows:

(i) Alice with IP address IPreal browses the web.

10http://donottrack.us
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1.  As	  a	  function	  of	  User’s	  loss?	  
− Differential	  privacy	  +	  auctions	  [Ghosh-‐Roth11]	  
− hard	  to	  put	  into	  practice:	  bid	  leaks,	  users’	  assessment	  

2.  As	  a	  function	  of	  Provider’s	  benefit?	  
− Can	  be	  thought	  of	  as	  a	  coalition	  game	  [Kleinberg01]	  
− Requires	  truthful	  revelation	  of	  value	  

* Run	  an	  auction	  (with	  unlimited	  supply)	  
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2.	  How	  to	  Price	  Private	  Data?	  



*  For	  sale:	  identifying	  your	  browsing	  in	  [t;t+1]	  
* Unlimited	  supply	  auctions	  
− Sell	  your	  personal	  data	  to	  multiple	  purchasers	  
− Every	  purchaser	  indicates	  a	  maximum	  price	  
− User’s	  revenue	  

− Run	  exponential	  mechanism:	  	  
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The	  personal	  data	  auction	  
in contrast to previous solutions that constrain the ag-
gregators to access data through limited variables that
are deemed ‘safe’ to release [4]. Many aggregators run
specialized algorithms on their data sets. Forcing ag-
gregators to disclose these algorithms or constraining
the data they are able to use is a losing proposition.

Here is why we believe that aggregators can compute
the value of access to a user accurately: First, aggrega-
tors have experience extracting value from PII. Second,
they are able to assess revenues on a short-term ba-
sis through the sale of goods or ad-space, compared to
the long-term risk a user must calculate in dealing with
privacy. Finally, aggregators typically deal with many
customers, and can take a little more risk in overesti-
mating or underestimating the value of access, as op-
posed to users who are more risk averse.

Model
Formally, we denote the set of users by I, and each

user by the index i. The scheme we describe next is
general enough to apply to different types of PII. We
introduce the set of sites J whose elements, denoted
by the index j can be either a URL (for web-browsing),
or a geographical location (e.g., a longitude and latitude
using GPS, or a cell in a mobile network). We assume
that users disclose a simple count of their activity on
different sites, denoted by µi(j), which is a vector that
indicates how many visits the user has made to either
a URL or a location. It is possible to apply the same
model to a more complex vector that would indicate
time, duration, or order of visits. We assume that each
user indicates a subset Si ⊆ J that contains all the sites
she is ready to be tracked on. This indicates that an
aggregator would be able to uniquely identify this user
whenever she visits these sites, and will also be given
µi(j) for j ∈ Si. This enables the aggregator to build-
up a profile over time, to further help with targeting.

Let us denote the set of aggregators by K, each in-
dexed by k. Intuitively, aggregator k should be willing
to pay to access this information as long as the price to
acquire it is smaller than the additional revenue rk it
can make. Note that the good being sold on the market
is access to PII. This good can be sold to multiple ag-
gregators with no marginal cost of reproduction, hence
the market can be thought of as having an unlimited
supply. Extensions for an aggregator to buy exclusive
access can be included although beyond the scope of
this paper. However, there can be strong incentive for
aggregators to lie about their valuation.

In order to effectively trade such unlimited supply
goods, we rely on the auction mechanism called the
exponential mechanism [13] which has the following
properties: (i) it has been shown to be a truth telling
mechanism; it is in the best interest of the bidders to
be honest about their valuation and (ii) the scheme has
been shown to be close to optimal in terms of revenue
for the seller (end-user in our case). We choose this ob-

jective for this paper, while noting that other objective
functions (e.g., maximizing revenue for all players in the
value chain) can be chosen.

In the auction, we assume that each aggregator k in
K bids a maximum price pi,k that it is ready to pay to
access user i. Assuming that the fixed price set is p and
all willing bidders pay p, the total revenue is given by:

R ((pi,k)k∈K, p) =
∑

k∈K

p × I{p≤pi,k} .

When p > maxk∈K pi,k, the revenue will be zero, as
no one buys the information that is priced too high.

We wish to choose p to maximize this sum. Following
[13] we first assign an initial value to p according to
a measure ν on R and then we re-weigh this measure
to choose the actual price used. To re-weigh, we use
an exponential function that puts more weight on high
value of R, according to a parameter ε > 0. Hence the
pdf of the chosen price is given by

exp (εR ((pi,k)k∈K, p)) ν(p)∫ ∞
0 exp (εR ((pi,k)k∈K, s)) ν(s)ds

Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least

OPT −3 ln(e+OPT ε2m)
ε

, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed
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an exponential function that puts more weight on high
value of R, according to a parameter ε > 0. Hence the
pdf of the chosen price is given by

exp (εR ((pi,k)k∈K, p)) ν(p)∫ ∞
0 exp (εR ((pi,k)k∈K, s)) ν(s)ds

Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least

OPT −3 ln(e+OPT ε2m)
ε

, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed
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functions (e.g., maximizing revenue for all players in the
value chain) can be chosen.

In the auction, we assume that each aggregator k in
K bids a maximum price pi,k that it is ready to pay to
access user i. Assuming that the fixed price set is p and
all willing bidders pay p, the total revenue is given by:

R ((pi,k)k∈K, p) =
∑

k∈K

p × I{p≤pi,k} .

When p > maxk∈K pi,k, the revenue will be zero, as
no one buys the information that is priced too high.

We wish to choose p to maximize this sum. Following
[13] we first assign an initial value to p according to
a measure ν on R and then we re-weigh this measure
to choose the actual price used. To re-weigh, we use
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0 exp (εR ((pi,k)k∈K, s)) ν(s)ds

Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least
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, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed
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* Data	  obtained	  through	  de-‐anonymizer	  
− The	  purchasers	  who	  won	  the	  auction	  are	  given	  the	  	  
associating	  function	  IP-‐fake/IP-‐real	  for	  this	  user	  

− Raw	  information:	  could	  be	  used	  for	  any	  algorithms	  
− Real	  time:	  can	  be	  used	  for	  immediate	  action	  

* Re-‐run	  the	  bidding	  process	  periodically	  
− Purchasers	  can	  infer	  users’	  profile	  from	  history	  
− But	  they	  can’t	  use	  it!	  
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3.	  Reveal	  



Case	  Study	  
−  Mobile	  Web	  browsing	  

large	  city,	  ~200k	  users	  
−  Online	  Coupon	  Dealers	  

crawl	  yipit.com	  
−  Information	  released	  by	  

decreasing	  popularity	  

Revenue	  vs.	  disclosure:	  	  
A	  sweet	  spot!	  
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Confirms	  previous	  results	  on	  use	  of	  personal	  information	  to	  improve	  
click-‐entropy	  (See	  [Krause-‐Horvitz	  2008]).	  



* Transactional	  Privacy,	  a	  primer	  
− Need	  for	  alternative	  economic	  approach	  to	  privacy	  
	  
* Highlights:	  
− Can	  we	  practically	  build	  TP?	  
− The	  real	  reasons	  why	  it	  may	  not	  work	  
− Can	  it	  be	  incrementally	  deployed?	  

* Concluding	  remarks	  
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This	  talk	  



“I	  can	  resell	  your	  information	  to	  1000	  people”	  
“wait,	  I	  can	  even	  sell	  information	  about	  my	  friends!”	  
− BUT	  you	  can’t	  sell	  access	  to	  info	  for	  commercial	  use!	  

“To	  bid,	  companies	  need	  information	  anyway”	  
− True,	  but	  for	  the	  same	  reason	  they	  can’t	  monetize	  it	  

“You	  give	  away	  value	  of	  statistical	  information”	  
−  Indeed,	  it	  becomes	  a	  public	  good.	  It’s	  a	  feature!	  

“Price	  discrimination	  becomes	  unprofitable”	  
−  Is	  that	  certain?	  Is	  that	  a	  bad	  thing?	  
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“This	  will	  not	  work	  because	  …	  



“Tor	  is	  too	  slow	  anyway,	  and	  you	  can	  attack	  it”	  
− Something	  much	  lighter,	  since	  we	  only	  need	  to	  raise	  
the	  bar.	  Companies	  care	  about	  reputation	  

“wouldn’t	  disclosing	  bulk	  of	  data	  scare	  users?	  
	  today’s	  ecosystem	  relies	  on	  their	  ignorance”	  

− Aim	  at	  transparency;	  eventually	  users	  should	  know.	  
“wouldn’t	  it	  encourage	  users	  to	  over-‐expose.”	  
− Yes,	  which	  is	  why	  not	  all	  information	  can	  be	  traded	  
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“Still	  this	  will	  not	  work	  as	  …	  



“What	  if	  users	  forge	  bogus	  data?”	  
“And	  get	  compensated	  for	  it,	  at	  the	  limit	  it	  means	  these	  
signals	  are	  useless”	  
−  still	  open	  problem:	  some	  data	  are	  verifiable	  

“What	  if	  there	  is	  there	  is	  not	  enough	  per	  user?”	  
“and	  they	  won’t	  bother	  for	  2c	  a	  month”	  
−  still	  open	  problem:	  (1)	  we	  still	  have	  to	  make	  the	  math	  
as	  the	  pie	  may	  grows,	  (2)	  we	  could	  make	  it	  more	  
attractive:	  lottery,	  pay	  with	  services	  	  
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Why	  indeed	  it	  may	  not	  work	  



* Transactional	  Privacy,	  a	  primer	  
− Need	  for	  alternative	  economic	  approach	  to	  privacy	  
	  
* Highlights:	  
− Can	  we	  practically	  build	  TP?	  
− The	  real	  reasons	  why	  it	  may	  not	  work	  
− Can	  it	  be	  incrementally	  deployed?	  

* Concluding	  remarks	  
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* Current	  choice:	  
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“Why	  Johnny	  can’t	  opt-‐out”	  

P a
(a) today

P a
(b) user blocks tracking

P a
(c) user obfuscates data

impression inferred data explicit data
revenueobfuscated data

P a

(f) mediated market
mP a

(e) direct market

P a

(d) privacy preserving ads
D
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or	  



* But	  this	  creates	  initially	  some	  revenue	  loss	  
−  is	  there	  a	  deployment	  that	  is	  incentive	  compatible?	  
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Tomorrow	  possible’s	  vision	  P a
(a) today

P a
(b) user blocks tracking

P a
(c) user obfuscates data

impression inferred data explicit data
revenueobfuscated data

P a

(f) mediated market
mP a

(e) direct market

P a

(d) privacy preserving ads
D

P a
(a) today

P a
(b) user blocks tracking

P a
(c) user obfuscates data

impression inferred data explicit data
revenueobfuscated data

P a

(f) mediated market
mP a

(e) direct market

P a

(d) privacy preserving ads
D



* Using	  multiple	  traces	  (Residential,	  Mobile,	  Campus)	  
− And	  a	  simple	  model	  of	  Cost-‐Per-‐Mille	  

− RON	  is	  base	  price,	  TQM	  quality	  of	  site	  
*  I	  is	  the	  “Intent”	  of	  user	  u	  as	  seen	  by	  aggregator	  a	  
	  

	  
− Estimated	  using	  categories	  and	  browsing	  +	  adwords	  
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A	  closer	  view	  at	  today’s	  ads	  

a single page view can constitute multiple impressions
sold to advertisers by multiple aggregators.

2.3 Revenue for publishers and aggregators.
Aggregators and publishers share advertising revenue

generated by displaying ads on Web sites. We assume
the aggregator retains a constant fraction of the adver-
tising revenue (↵) and passes the remaining amount on
to the publisher. Google AdSense, for instance, keeps
↵ ⇠ 0.32 [29]. (We use this value in the paper.)

We consider ad revenue on a “cost-per-mille” (CPM)
basis as this is the primary method of purchasing tar-
geted display ad and represents the price for 1,000 im-
pressions (views) of an ad [21]. The amount an adver-
tiser will pay for impressions depends on the user u, ad
network a and publisher p.

CPM(u, p, a) = RONa ⇥ TQMp ⇥ Ia(u) (1)

Run-of-network (RONa). RONa is the base price
for an impression in ad network a. It represents the
price for an ad that may be shown on any publisher
that a is a�liated with. A RON ad is a generic ad that
is shown to users about whom little is known or who
are anonymous [9].

Tra�c quality multiplier (TQMp). TQMp is a
multiplier of the impression price that captures the qual-
ity of the impression based on factors such as the type
of publisher or ad location.

User Intent Ia(u). The value of an impression in-
creases as a function of the estimated purchasing intent
of the user. Currently, aggregators segment users based
on their interests [8], as inferred through online track-
ing. Certain segments are determined to have higher
purchasing intent (e.g., cell phone shoppers) and these
users’ impressions are worth more.

We use implicit intent IIa(u) to represent the intent
value an aggregator can infer about a user. It natu-
rally depends on the presence of an aggregator on the
sites the user visits. We distinguish this from explicit
intent EI(u) which is computed with knowledge of all

sites the user visits. Consider the example: user Bob
visits (espn.com, swimming.com, pets.com). Aggre-
gator A is present on the first two publishers, while
aggregator B is present on the third one. Implicit in-
tent for aggregator A about Bob would be limited to
Bob being interested in sports, while for aggregator B,
it is that Bob is interested in pets. The explicit intent
EI(u) is that Bob is interested in sports and pets.

2.4 Overall revenue.
The total revenue 2 of the online advertising ecosys-

2Note that this is the estimated revenue; we use ‘revenue’
to refer to the estimate

tem is the following:

R =
X

u2U

X

p2P

" 
X

a2A

µu(p)
1000

CPM(u, p, a)

!#
(2)

In the following sections, we empirically and analyti-
cally consider the impact of privacy protection on rev-
enue. In the next section, we describe how we extract
values for di↵erent parameters for our model.

3. DATA ANALYSIS METHODOLOGY
We use traces of HTTP tra�c in multiple networks to

study of advertising and incentives for deploying privacy
protection. While having access to an aggregator or a
publisher’s clickstream would aid our study, it would
provide only a single point-of-view. In contrast, HTTP
traces give us near complete visibility into the set of
publishers and aggregators that the user population in-
teracts with when they are present in the network. We
also describe how we assign values to the parameters
described in Sec. 2 from the data.

3.1 Data sets.
Residential HTTP trace (HTTP) Our first data
set is an anonymized HTTP trace from a residential
neighborhood in a large Western European city. The
users are DSL subscribers (identified by subscriber ID)
and the trace was collected at a DSLAM (serving users
in high thousands) over a day in April, 2011. There
were close to 40 million HTTP requests over the day.
Mobile HTTP trace (mHTTP) Our second data
set is an anonymized HTTP trace of the entire subscriber-
base of a mobile network over a Western European coun-
try over a day in late Aug. 2011. The number of users
(identified by phone numbers) in the trace are in the
millions, and account for more than 1.5 billion HTTP
transactions over the day.
University HTTP trace (Univ) The last dataset is
one month of HTTP traces from a North American uni-
versity with thousands of users. To protect user privacy,
users within the data set are identified using a unique ID
(based on their IP address) that is only valid for one day
which precludes longitudinal analysis of user behavior.
We run our experiments over the entire month, but for
simplicity present results from a single day (9/29/2010).
Results are similar over the month-long period.

3.2 Data analysis overview.
For each user in the HTTP traces (represented by

anonymized identifiers), we first group their HTTP trans-
actions into sessions. Second, we identify publishers and
aggregators within each session. This results in a set of
publishers and aggregators for each user. We use the
set of publishers to compute user intent (IIa(u) and
EI(u) from Sec. 2). Given the intent values, and values
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Figure 5: Distribution of implicit intent, IIa(u).

potential values for Ia(u) in our model:

Ia(u) =

8
<

:

IIa(u) u and p do nothing
EI(u) u sells and a buys data
1 otherwise

(3)

Both implicit intent (IIa(u)) and explicit intent (EI(u))
are as described in Sec. 3.3, with the additional under-
standing that the user can now sell EI(u) in the infor-
mation market. Recall that implicit intent (IIa(u)) is
what aggregators can infer, while explicit intent (EI(u))
can consist of high quality information that the user di-
rectly provides. And when the user or publisher block
tracking there is no increase in CPM as a result of in-
tent, hence it is set to 1.

5.3 Quantifying the cost of blocking.
We use our datasets and the modified model to un-

derstand the change in revenue if users block tracking.
Fig. 5 shows how much value is currently derived from
implicit intent which stands to be lost if users block.
The average value of IIa(u) is 4.2 in the HTTP, 3.8 in
mHTTP and 3.1 in the Univ traces, respectively. In-
deed, when we compute revenue with all users block-
ing (i.e., Ia(u) = 1) revenue decreases by a factor of
4.2 in the HTTP, 3.8 in mHTTP, and 3.2 in the Univ
traces, respectively. A large population of users block-
ing – in the worst case, if the Do Not Track (DNT)
header [2] became default – would represent a signif-
icant threat to advertising revenue. If proposals like
DNT are honored by aggregators this may lead to low-
ered quality of service as the publisher will lose out
on additional revenues. Blocking also poses the poten-
tial to decrease functionality of Web sites for users(e.g.,
blocking Javascript via NoScript [30]). Hence, for these
reasons, it can be argued that most users will not take
the extreme step of blocking entirely. However, we find
that even if 5% of the top users (Fig. 2) block, the rev-
enue drop is between 35%-60%. With regards to obfus-
cation, if we assume that incorrect targeting is worse
than no targeting at all, then the drop in revenues due
to blocking will form a lower bound on revenue loss due
to obfuscation.

6. INFORMATION MARKETPLACES
We have shown that aggregators can accurately esti-

mate user intent and that their revenue naturally drops
as users unilaterally block tracking. The question then
arises – can privacy solutions be economically viable
vis-a-vis online advertising?

To answer this question, we consider an information
marketplaces that is based around users and aggrega-
tors cooperating. For cooperation to occur, the users
and aggregators need to fairly share advertising rev-
enue so that each party has incentive to participate in
the market. We address this problem by modeling the
information market as a cooperative game on a per-

impression basis. We use Shapley value [35] to under-
stand how revenue should be shared between players.
We consider dynamics beyond a single impression using
empirical data in Sec. 7.

6.1 Basic structure of the game.
We model each ad impression as a game, where the

revenue generated by the impression depends on the
actions of the players: whether or not to join the infor-
mation market.
Players. We consider users and aggregators. While
publishers play a role in online advertising, they do not
purchase or provide data in our market model. We dis-
cuss how publishers may create incentives for users and
aggregators to join the market in Sec. 6.4. In one form
of markets we consider below, a trusted third party or
a mediator is also considered a player.
Revenue sharing using Shapley value. Since the
outcome (advertising revenue) depends on the combined
e↵orts of players in a coalition, a natural question is how
to fairly divide the proceeds of the game among players.
Compensating players according to their contribution to
the game creates incentives for them to participate in
an information market. The Shapley value [35] allows
to do that using a minimum set of axioms (summarized
in Appendix C). Shapley value also has the desirable
stability property – that it lies at the core for general
classes of games (e.g., convex cooperative games). This
means that given Shapley value, all players will have
incentive to enter a stable cooperation. As we calcu-
late the Shapley value on a per impression basis that
involves the user and aggregator, we do not run into
computational overheads.

We consider two cooperative games representing po-
tential embodiments of an information marketplace:
1. Direct marketplace. Aggregators purchase data
directly from users. This may be achieved using a tech-
nology such as RePriv [14]; where the aggregator com-
pensates the user in exchange for running a mining plug-
in in the user’s browser.
2. Mediated marketplace. The sale of user data to

7

u	  do	  nothing	  
u	  sells	  data	  to	  a	  
u	  block	  tracking	  



* Deployment	  under	  two	  scenarios:	  	  
− Let	   	   	  	  	  	  	  	  	  	  “consented	  tracking	  ratio”	  
−  r>1	  because	  explicit	  intent	  is	  larger	  than	  implicit	  
−  relates	  intuitively	  to	  user’s	  bargaining	  power	  
* Market	  deployment	  as	  a	  coalitional	  game	  
− Prop:	  In	  a	  direct	  market,	  distributing	  revenue	  
according	  to	  Shapley	  value	  (i.e.	  under	  fairness	  
axioms)	  is	  incentive	  compatible	  iff	  r>2	  

− Prop:	  In	  a	  mediated	  market,	  it	  is	  iff	  r>3/2	  
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Characterizing	  Deployment	  

Table 3: Revenue in the direct marketplace.
S Ia(u) R(S)
; IIa(u) ↵RONaTQMpIIa(u)

{ u } 1 ↵RONaTQMp

{ a } IIa(u) ↵RONaTQMpIIa(u)
{ u, a } EI(u) ↵RONaTQMpEI(u)

aggregators is mediated by a third party. An example is
Transactional Privacy (TP) [34] where a (paid) neutral
third party mediates the sale of data. In this setting,
we also consider the mediator as a player in the game.

Solutions like Privad [18] do not explicitly discuss the
possibility of monetary compensation to the user, hence
they cannot be considered as forming a market as de-
fined above. However, if Privad were to include mone-
tary rewards to the user, the presence of an active third
party would make it a mediated marketplace.

Assumptions. We make the assumption that if a
user decides to use the marketplace her behavior does
not change. When the user joins a marketplace, the
market must block tracking of this user, otherwise there
is no incentive for aggregators to join the market and
purchase data (and can lead to arbitrage). We as-
sume the market implements mechanisms as suggested
by TP [34] or RePriv [14] to preclude tracking by ag-
gregators.

6.2 Direct marketplace.
In a direct market, there are two players, the user and

aggregator, that may form a coalition. Table 3 presents
the revenue obtained per-impression depending on the
participation of the user and aggregator in the coalition
(S) in the direct market game. The revenue in today’s
status quo (S = ;) has an intent coe�cient, Ia(u), of
IIa(u). The revenue remains the same as today if only
the aggregator joins the market as they can still track
users not participating in the market. Ia(u) drops to 1
when S = {u}, that is when only the user opts into the
market and hence blocks tracking. In contrast, when
all players join the marketplace (S = {u, a}) the intent
coe�cient increases to EI(u).

Direct market game is convex. Our revenue func-
tion is supermodular but non-monotone. This property
is unusual and implies that, as long as the Shapley value
in the grand coalition is positive for each player, it is
stable as no smaller subset of players can benefit from
deviating (proof omitted).

Applying Eq.8 (from Appendix C), we obtain that
the Shapley value for each player is given by:

'u = ↵RONaTQMp

2 (EI(u)� IIa(u)� (IIa(u)� 1))
'a = ↵RONaTQMp

2 (EI(u)� 1) .
(4)

The players hence receive whatever their original rev-
enue was in the original status quo, plus an average of

their incremental benefit to the system when they join
the coalition. This compensation accounts for players
increasing revenue by selling data or decreasing rev-
enue by blocking tracking. It has two important conse-
quences:
(1) On a per-impression basis, aggregators al-
ways have incentive to join the direct market.
Aggregators maintain the revenue they make today
(R({;}) = ↵RONaTQMpIIa(u)) plus their Shapley al-
located value. The latter is positive as the value of a
coalition never decreases when they join. However, in
contrast with today’s status quo, they have to share a
part of this additional revenue with the user.
(2) It is not always in the user’s interest to join
the market. The user’s share of advertising rev-
enue depends on the incremental quality of the data
they sell (captured through EI(u)� IIa(u)). However,
since their contribution to the game can be negative (via
blocking), the user’s Shapley value may be negative if
they do not increase value su�ciently (via EI(u)) to
o↵set the loss from blocking. In these cases, clearly a
user will not join the market in practice. However, we
reiterate that while from an economic viewpoint, a user
will not be incentivised to join the market she may join
due to privacy concerns.

We characterize the condition where the user’s rev-
enue is positive (i.e., EI(u) is large enough to o↵set
the loss from blocking) with the following “consented
tracking ratio”:

ru,a =
EI(u)� 1
IIa(u)� 1

.

We observe that ru,a is always positive (since EI(u) and
IIa(u) � 2) and that, in the direct market, the user has
incentive to join i↵ 'u > 0. It is easy to see that this
is true i↵ ru,a > 2. Thus, we have shown that a critical
condition for users to participate in a direct market is
ru,a > 2.

6.3 Mediated marketplace.
We next consider the case where aggregators purchase

user data via neutral (paid) mediator as is proposed
in [34]. This has the advantage that the users and ag-
gregators need only form an agreement with a single in-
termediary. However, the presence of a mediator means
that revenue must be shared with an additional party.

Table 4 presents per-impression revenue for a three
player game where the players are the user, aggregator
and mediator. Unlike the previous game, the user can-
not block tracking unless the mediator also participates
and coordinates the market. As a result, the intent co-
e�cient decreases to 1 only when S = {u, m}.
Mediated market is not convex. Again, this game
is non monotonic but the revenue function is not su-
permodular (a condition for convexity). Indeed, the
revenue obtained by adding u to S = ; is higher than
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Publishers	  
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*  Largest	  ≠	  more	  profitable	  
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Figure 2: Cumulative fraction of revenue at-
tributed to each aggregator and user.

Table 1: Publishers with the most revenue
(mHTTP).

Publisher Frac. Rev. Frac. Users Category
facebook.com 0.09 0.15 society
google.co.uk 0.04 0.11 computers
bbc.co.uk 0.03 0.07 arts
fbcdn.net 0.03 0.13 society
twitter.com 0.03 0.04 computers
yahoo.com 0.03 0.04 computers
google.com 0.02 0.18 computers
skysports.com 0.02 0.04 regional
premierleague.com 0.01 0.01 regional
ebay.com 0.01 0.02 shopping

of sessions per user with a correlation (r-value) of 0.64
for mHTTP. Unsurprisingly, users who browse more are
more valuable in the impression-based revenue model.
Most popular publishers do not necessarily gen-
erate most revenue. Table 1 shows the top pub-
lishers in the mHTTP dataset. We find that while
Google (google.com) is the most visited publisher with
18% of users visiting Google as a publisher5, Facebook
(facebook.com) actually generates the most revenue:
9%. We see Facebook’s CDN fbcdn.net also gener-
ating significant revenue since it also serves Facebook
Web pages. Revenue is correlated with the number of
aggregators present on each publisher, in the mHTTP
dataset, we find a correlation of 0.61 (r-value) between
number of aggregators and revenue per publisher.
Google is the top aggregator Table 2 show the
top aggregators in the mHTTP dataset. As in previous
work [25], we observe Google playing an active role as
an aggregator. Google is present on significantly more
publishers than the other aggregators, with presence on
80% of publishers in the mHTTP dataset. Fig. 2 shows
that advertising revenue is concentrated by a few aggre-
gators with the top 5-10% of aggregators getting 90%
of the ad revenue.
Facebook entering the aggregation game. Inter-
5Note that we use domain to identify publishers so
google.co.uk and google.com are treated separately. We
cannot sum the fraction of users they are present on because
there may be overlap in the set of users that visit them.

Table 2: Aggregators with the most revenue
(mHTTP ).

Frac. Frac. Frac.
Aggregator Rev. Users Pubs.
Google 0.18 0.17 0.80
Facebook 0.06 0.09 0.23
GlobalCrossing (AdMob) 0.04 0.11 0.19
AOL 0.03 0.04 0.07
Microsoft 0.03 0.04 0.17
Omniture 0.03 0.05 0.07
Yahoo! (AS42173) 0.03 0.04 0.07
Internap (RevSci) 0.02 0.03 0.01
Quantcast 0.02 0.03 0.09
Yahoo! (AS43428) 0.01 0.03 0.11
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Figure 3: CDF of inferred intent (IIa(u)) nor-
malized by explicit intent (EI(u)).

estingly, Facebook also ranks highly as an aggregator
reaching 9% of users with presence on 23% of first par-
ties in the mHTTP dataset. This is due to the ubiq-
uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
Aggregators know most about popular sites. We
previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
shows the fraction of publishers the top four aggrega-
tors are present on for varying numbers of top publish-
ers. Top aggregators are focusing on popular publishers
with the top aggregators present on more than 70% of
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ebay.com 0.01 0.02 shopping

of sessions per user with a correlation (r-value) of 0.64
for mHTTP. Unsurprisingly, users who browse more are
more valuable in the impression-based revenue model.
Most popular publishers do not necessarily gen-
erate most revenue. Table 1 shows the top pub-
lishers in the mHTTP dataset. We find that while
Google (google.com) is the most visited publisher with
18% of users visiting Google as a publisher5, Facebook
(facebook.com) actually generates the most revenue:
9%. We see Facebook’s CDN fbcdn.net also gener-
ating significant revenue since it also serves Facebook
Web pages. Revenue is correlated with the number of
aggregators present on each publisher, in the mHTTP
dataset, we find a correlation of 0.61 (r-value) between
number of aggregators and revenue per publisher.
Google is the top aggregator Table 2 show the
top aggregators in the mHTTP dataset. As in previous
work [25], we observe Google playing an active role as
an aggregator. Google is present on significantly more
publishers than the other aggregators, with presence on
80% of publishers in the mHTTP dataset. Fig. 2 shows
that advertising revenue is concentrated by a few aggre-
gators with the top 5-10% of aggregators getting 90%
of the ad revenue.
Facebook entering the aggregation game. Inter-
5Note that we use domain to identify publishers so
google.co.uk and google.com are treated separately. We
cannot sum the fraction of users they are present on because
there may be overlap in the set of users that visit them.
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estingly, Facebook also ranks highly as an aggregator
reaching 9% of users with presence on 23% of first par-
ties in the mHTTP dataset. This is due to the ubiq-
uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
Aggregators know most about popular sites. We
previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
shows the fraction of publishers the top four aggrega-
tors are present on for varying numbers of top publish-
ers. Top aggregators are focusing on popular publishers
with the top aggregators present on more than 70% of
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*  Largest	  aggregators	  have	  specific	  advantage	  
−  Implicit	  intent:	  based	  on	  what	  aggregator	  can	  infer	  
− Explicit	  intent	  ≠	  implicit	  intent	  
* But	  implicit	  intent	  is	  still	  not	  perfectly	  accurate	  
− Leaving	  users	  some	  bargaining	  power	  	  

33	  

The	  power	  of	  large	  aggregators	  

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized rank

C
um

ul
at

ive
 re

ve
nu

e

HTTP−users
HTTP−aggregators
mHTTP−users
mHTTP−aggregators
Univ−users
Univ−aggregators

Figure 2: Cumulative fraction of revenue at-
tributed to each aggregator and user.

Table 1: Publishers with the most revenue
(mHTTP).

Publisher Frac. Rev. Frac. Users Category
facebook.com 0.09 0.15 society
google.co.uk 0.04 0.11 computers
bbc.co.uk 0.03 0.07 arts
fbcdn.net 0.03 0.13 society
twitter.com 0.03 0.04 computers
yahoo.com 0.03 0.04 computers
google.com 0.02 0.18 computers
skysports.com 0.02 0.04 regional
premierleague.com 0.01 0.01 regional
ebay.com 0.01 0.02 shopping

of sessions per user with a correlation (r-value) of 0.64
for mHTTP. Unsurprisingly, users who browse more are
more valuable in the impression-based revenue model.
Most popular publishers do not necessarily gen-
erate most revenue. Table 1 shows the top pub-
lishers in the mHTTP dataset. We find that while
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18% of users visiting Google as a publisher5, Facebook
(facebook.com) actually generates the most revenue:
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uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
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previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
shows the fraction of publishers the top four aggrega-
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potential values for Ia(u) in our model:

Ia(u) =

8
<

:

IIa(u) u and p do nothing
EI(u) u sells and a buys data
1 otherwise

(3)

Both implicit intent (IIa(u)) and explicit intent (EI(u))
are as described in Sec. 3.3, with the additional under-
standing that the user can now sell EI(u) in the infor-
mation market. Recall that implicit intent (IIa(u)) is
what aggregators can infer, while explicit intent (EI(u))
can consist of high quality information that the user di-
rectly provides. And when the user or publisher block
tracking there is no increase in CPM as a result of in-
tent, hence it is set to 1.

5.3 Quantifying the cost of blocking.
We use our datasets and the modified model to un-

derstand the change in revenue if users block tracking.
Fig. 5 shows how much value is currently derived from
implicit intent which stands to be lost if users block.
The average value of IIa(u) is 4.2 in the HTTP, 3.8 in
mHTTP and 3.1 in the Univ traces, respectively. In-
deed, when we compute revenue with all users block-
ing (i.e., Ia(u) = 1) revenue decreases by a factor of
4.2 in the HTTP, 3.8 in mHTTP, and 3.2 in the Univ
traces, respectively. A large population of users block-
ing – in the worst case, if the Do Not Track (DNT)
header [2] became default – would represent a signif-
icant threat to advertising revenue. If proposals like
DNT are honored by aggregators this may lead to low-
ered quality of service as the publisher will lose out
on additional revenues. Blocking also poses the poten-
tial to decrease functionality of Web sites for users(e.g.,
blocking Javascript via NoScript [29]). Hence, for these
reasons, it can be argued that most users will not take
the extreme step of blocking entirely. However, we find
that even if 5% of the top users (Fig. 2) block, the rev-
enue drop is between 35%-60%. With regards to obfus-
cation, if we assume that incorrect targeting is worse
than no targeting at all, then the drop in revenues due
to blocking will form a lower bound on revenue loss due
to obfuscation.

6. INFORMATION MARKETPLACES
We have shown that aggregators can accurately esti-

mate user intent and that their revenue naturally drops
as users unilaterally block tracking. The question then
arises – can privacy solutions be economically viable
vis-a-vis online advertising?

To answer this question, we consider an information
marketplaces that is based around users and aggrega-
tors cooperating. For cooperation to occur, the users
and aggregators need to fairly share advertising rev-
enue so that each party has incentive to participate in
the market. We address this problem by modeling the
information market as a cooperative game on a per-

impression basis. We use Shapley value [34] to under-
stand how revenue should be shared between players.
We consider dynamics beyond a single impression using
empirical data in Sec. 7.

6.1 Basic structure of the game.
We model each ad impression as a game, where the

revenue generated by the impression depends on the
actions of the players: whether or not to join the infor-
mation market.
Players. We consider users and aggregators. While
publishers play a role in online advertising, they do not
purchase or provide data in our market model. We dis-
cuss how publishers may create incentives for users and
aggregators to join the market in Sec. 6.4. In one form
of markets we consider below, a trusted third party or
a mediator is also considered a player.
Revenue sharing using Shapley value. Since the
outcome (advertising revenue) depends on the combined
e↵orts of players in a coalition, a natural question is how
to fairly divide the proceeds of the game among players.
Compensating players according to their contribution to
the game creates incentives for them to participate in
an information market. The Shapley value [34] allows
to do that using a minimum set of axioms (summarized
in Appendix C). Shapley value also has the desirable
stability property – that it lies at the core for general
classes of games (e.g., convex cooperative games). This
means that given Shapley value, all players will have
incentive to enter a stable cooperation. As we calcu-
late the Shapley value on a per impression basis that
involves the user and aggregator, we do not run into
computational overheads.

We consider two cooperative games representing po-
tential embodiments of an information marketplace:
1. Direct marketplace. Aggregators purchase data
directly from users. This may be achieved using a tech-
nology such as RePriv [13]; where the aggregator com-
pensates the user in exchange for running a mining plug-
in in the user’s browser.
2. Mediated marketplace. The sale of user data to
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* We	  need	  to	  explore	  alternative	  approaches	  to	  
privacy	  with	  an	  economic	  angle	  
− Transactional	  privacy	  focuses	  on	  keeping	  data	  in	  
control	  of	  which	  data	  is	  used	  and	  how	  

* Encouraging	  observations	  
− Revenue	  vs.	  disclosures	  exhibits	  a	  sweet	  spot	  
− Data	  revelation	  can	  exhibit	  mutual	  benefits	  

* Not	  shown	  today:	  adoption,	  location	  privacy	  
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