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Differential privacy is a particularly appealing way of
defining privacy due to its ability to handle adversaries
with arbitrary auxiliary information at their disposal [1].
In essence, using differential privacy should imply that we
do not have to worry about the external databases or spe-
cialized knowledge that an attacker has access to. Mean-
while, one of the biggest challenges for anonymity net-
works, like Tor, lies in trying to account for the variety
of traffic features that may be used to attack the unlink-
ability of sessions or the anonymity of users. Therefore,
developing anonymity networks that meet some variant of
the differential privacy definition would appear to be an
ideal way to address all of the potential sources of infor-
mation leakage in a single security model.

In this paper, however, I will discuss why I believe that
differential privacy and its standard variants are unsuit-
able for computer networks in general, and anonymity net-
works in particular. The crux of the argument rests on
an implicit assumption made within the differential pri-
vacy definition; namely, that each row in the database be-
ing protected is independent of all other rows (i.e., there
are no correlations or other semantic relationships in the
data). This non-obvious assumption interacts with the in-
herent structure induced by network protocols and user ac-
tivities to render differential privacy ineffective on the vast
majority of network traffic. This is true whether the data
is released non-interactively via packet traces, or interac-
tively as a means of modeling the security of anonymity
networks.

Group&

Bob&

Web&Page&

Image&

TCP&Session&

Packet&

Alice& Eve&

Email&

HTML& Video&

TCP&Session& TCP&Session&

Packet&Packet&

P2P&

Figure 1: Example network traffic ontology.

The following sections outline some unique properties
of network traffic and discuss their implications on achiev-
ing differential privacy. To conclude, I present a relatively
new privacy definition framework proposed by Kifer and
Machanavajjhala, called Pufferfish [3], and briefly sketch
how it might be parameterized for the setting of anonymity
networks. Pufferfish naturally subsumes the notion of dif-
ferential privacy and offers a similar level of robustness
to arbitrary auxiliary information, albeit under explicitly-
defined assumptions about the protected data (e.g., the
distribution it is drawn from). As such, it would seem
that Pufferfish may give us the opportunity to customize
a definition similar to differential privacy, yet capable of
accommodating the structure found in network traffic.

Correlations in Network Traffic. The complexity of
computer network traffic is quite unlike any other type of
privacy-sensitive data. Traffic on most networks is driven
by convoluted interactions among users, applications, and
ephemeral network conditions. Intuitively, we can think
about the network data as a fine-grained record of the
interactions among various objects whose representations
are dictated by the underlying network protocols. These
objects may include individual packets, TCP sessions, ap-
plication objects (e.g., web pages), computers, users, and
even groups of users.

The relationships among most of these objects may be
represented in an ontological hierarchy based on our un-
derstanding of the data, which may be derived from well-
defined network protocol specifications or, due to their
complexity, inferred through observation (e.g., behavior
of users). Figure 1 shows one such ontology where the
influence of groups or users is less quantifiable than the
clear relationship between packets and TCP sessions. In
some sense, the ontology represents an observer’s view of
the network traffic based on their knowledge and assump-
tions.

The ontology is important in considering the privacy
of the data because each object carries some information
about both its ancestors and descendants in the hierarchy.
The presence of a particular user, for instance, is implic-
itly encoded in each packet created due to her influence.
Traffic analysis attacks exploit this ontology to take in-
formation from apparently innocuous packets, work back
up the hierarchy using known relationships, and infer the
presence of application objects or even the user’s identity.
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Moreover, the ontology underscores the idea that there
are many different ways to define the same objects. The
failure of traffic analysis countermeasures can often be
traced to the defender having a weaker (or less accurate)
ontology than the attacker. A weaker ontology means that
the defender is incapable of protecting the object relation-
ships she does not know about. One example of this asym-
metry is when an attacker uses a more complex statistical
model (e.g., larger n-gram size) than the defender, and as
a result that attacker has a more accurate understanding
of the underlying relationships. To successfully achieve
any comprehensive form of privacy in this space we must
(1) have a more accurate ontology for the network traffic
than our adversary, and (2) appropriately hide all of the
known objects and relationships in that ontology.

Implications for Differential Privacy. Having estab-
lished some of the basic structural properties of network
traffic, we now examine how those properties interact with
the notion of differential privacy. It is important to recog-
nize that differential privacy was developed with databases
of health or census records in mind. In these scenarios,
each record is associated with only a single person and,
therefore, clearly uncorrelated to all other records. This
allowed for differentially private data release mechanisms
whose outputs did not change much due to the presence
or absence of any one person.

Kifer and Machanavajjhala explored the implications of
the implicit independence assumption made by differential
privacy and demonstrated several situations where corre-
lations in the data lead to violations of privacy [2]. One of
the simpler cases considers a differentially private database
containing edges from a social network graph. Kifer et
al. showed that the presence or absence of a single edge
in the graph is amplified because it can significantly alter
the growth of the social network. Specifically, the pres-
ence of a single edge would determine the degree to which
two independent communities in the graph merged, and so
the differentially private count of cross-community edges
would signal the existence of the edge.

Unfortunately, the relationships found within network
data can be used in exactly the same way to infer the
presence of various objects despite the use of differential
privacy. To see how this might lead to problems, let us
consider the relationship between TCP sessions and pack-
ets. Every TCP session must complete a three-way hand-
shake before any data is transmitted, and therefore SYN,
SYN/ACK, and ACK packets are tightly correlated with
all other packets in the session. A simple test for the
presence or absence of the handshake packets would be to
issue a differentially private query for the sum of the bytes
in two packet databases. If the TCP session associated
with the handshake packet transferred a sufficient number
of bytes, the difference in the results of the two queries
would be enough to distinguish the databases.

This same line of reasoning can be applied throughout
the ontology with similar effect: a TCP session download-

ing an HTML page influences all other HTTP queries
for that same web page, and the absence of the web
page would impact DNS queries and other user behav-
iors. These problems can be mitigated by adjusting the
ε parameter to be sufficiently small, however this would
translate to significant overhead in the case of anonymity
networks since, ostensibly, the only “noise” that could
be added in that scenario would be dummy traffic and
padding. More to the point, it is not clear what setting of
ε would be sufficient to protect the traffic (and associated
objects) sent over the anonymity networks.

Moving Forward. While the standard formulations of
differential privacy appear to be unsuitable for use in
anonymity networks, a new privacy definition framework
by Kifer and Machanavajjhala, called Pufferfish [3] offers
us a potential path forward. The concept behind the pro-
posed framework is that privacy definitions often need to
be customized to the requirements and assumptions of
their application domain, as illustrated in the examples
from the previous section. The framework allows a do-
main expert (not necessarily a privacy expert) to specify
the secrets in the data that they wish to protect and some
assumptions about the way the data was generated, such
as correlations or other structures that might exist.

More formally, the domain expert is tasked with defin-
ing a set of secrets S, a set of mutually exclusive pairs of
secrets Spairs ⊆ S×S, and a set of probability distributions
D, called data evolution scenarios. The evolution scenar-
ios essentially describe the ways the attacker might think
that the data was generated, similarly to the ontology from
the earlier section. As an example, we could define sender
anonymity by setting the secrets to be the set of all pos-
sible senders S = {ui : i = 1 . . . N} and the discriminative
pairs to be the event that each sender is or is not in the
data Spairs = {(ui,¬ui) : i = 1 . . . N}. Setting the data
evolution scenarios requires specific consideration for the
anonymity network’s protocol outputs and may be difficult
to specify if the protocol was not designed with a specific
distribution in mind. Assuming we are able to derive a set
of distributions D for the network traffic, then the proto-
col (denoted as function M applied to messages) satisfies
ε-SenderAnonymity(S,Spairs,D) if the following holds:

P (M(Msgs) = ω|ui, Θ) ≤ eεP (M(Msgs) = ω|¬ui, Θ) (1)

P (M(Msgs) = ω|¬ui, Θ) ≤ eεP (M(Msgs) = ω|ui, Θ) (2)
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