Incidence from 'Recent Infection' Prevalence

Alex Welte (with Norman Ives and Tom McWalter)

School of Computational and Applied Mathematics, University of the Witwatersrand

and

DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA)

> DIMACS/SACEMA Workshop 25 July 2007

> > Alex Welte Incidence from 'Recent Infection' Prevalence

Outline of Talk

1 Introduction

- 2 General Relations
- 3 Practical Models
- ④ Bias From Simplification
- **5** Statistical Considerations
- 6 The Long Term View

Introduction

General Relations Practical Models Bias From Simplification Statistical Considerations The Long Term View

Motivation Challenges

- Motivation
- Challenges
- 2 General Relations
- 3 Practical Models
- ④ Bias From Simplification
- 5 Statistical Considerations
- 6 The Long Term View

Introduction

General Relations Practical Models Bias From Simplification Statistical Considerations The Long Term View

Motivation Challenges

Motivation

- Determination of epidemiological trends requires knowledge of both *incidence* and *prevalence*.
- ► This is required for:
 - Allocating resources
 - Evaluating interventions
 - Planning cohort based studies

Introduction

General Relations Practical Models Bias From Simplification Statistical Considerations The Long Term View

Motivation Challenges

Measuring Incidence is Problematic

- 'Gold Standard' of cohort follow up is:
 - Expensive
 - Slow
 - Not free from bias
 - Intervention
 - Loss to follow up

Motivation Challenges

Alternatives to 'Gold Standard'

▶ Incidence from snapshots of 'recent infection' prevalence

- Many pasts can produce one present
- Problem of calibrating 'recent'
- Forever 'recent'?
- Sample sizes

Disease Progression and Survival Relating History to Present

Introduction

2 General Relations

- Disease Progression and Survival
- Relating History to Present

3 Practical Models

- 4 Bias From Simplification
- 5 Statistical Considerations
- 6 The Long Term View

Disease Progression and Survival Relating History to Present

Stages of Infection

- As observed through *two* assays of different sensitivity, infected individuals experience the following events:
 - **()** The moment of infection, at t
 - **(**) Infection becomes detectable by assay one, at $t + t_1$
 - 2 Infection becomes detectable by assay two, at $t + t_2$
 - **③** Death, from whatever cause, at $t + t_3$

Disease Progression and Survival Relating History to Present

Counting Infectees

All historically infected individuals

$$N_{\rm i}(0) = \int_{-\infty}^0 \lambda(t) \, dt = \int_{-\infty}^0 I(t) N_{\rm s}(t) \, dt$$

After infection at time t < 0 the probability of a being alive and classified as recently infected at time zero is given by

$$\begin{split} \mathbb{P} \big\{ (t_1 < -t) \text{ and } (t_2 > -t) \text{ and } (t_3 > -t) \big\} \\ &= \int_0^{-t} \int_{-t}^\infty \int_{-t}^\infty \rho(t_1, t_2, t_3) \, dt_3 \, dt_2 \, dt_1 \end{split}$$

The probability of a being alive and classified as not recently infected at time zero is given by

$$\mathbb{P}\big\{(t_2 < -t) \text{ and } (t_3 > -t)\big\}$$

Disease Progression and Survival Relating History to Present

Recently and Long Infected Individuals

 Counts of recently and long infected individuals observed in a cross-sectional survey

$$R = \int_{-\infty}^0 I(t) N_{\mathrm{s}}(t) \mathbb{P} \big\{ (t_1 < -t) \text{ and } (t_2 > -t) \text{ and } (t_3 > -t) \big\} \, dt$$

$$L = \int_{-\infty}^{0} I(t) N_{\rm s}(t) \mathbb{P}\left\{ (t_2 < -t) \operatorname{and} (t_3 > -t) \right\} dt$$

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

2 General Relations

3 Practical Models

- What Can We Hope to Know?
- Modelling the 'Forever Recent' Infection
- Equilibrium Population Dynamics
- Beyond Equilibrium Population Dynamics

4 Bias From Simplification

5 Statistical Considerations

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

Simplifications

- In order to infer incidence from observables, we need to make numerous simplifications of the general model.
 - Redefine incidence to start at t_1 .
 - Factorise $\rho(t_2, t_3)$ into $\rho_r(t_2)\rho_a(t_3)$ (independent events).
 - Use only a few 'moments' of ρ 's (preferably just the means).

Now define the survival times

$$S_{\mathbf{r}}(t) = 1 - \int_0^t \rho_{\mathbf{r}}(s) \, ds$$
$$S_{\mathbf{a}}(t) = 1 - \int_0^t \rho_{\mathbf{a}}(s) \, ds$$

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

Which Incidence Can Possibly Be Measured?

If $\boldsymbol{I}(t)$ is not constant then define a weighted average

$$I_{\rm w} = \frac{\int_{-\infty}^{0} I(t)W(t)\,dt}{\int_{-\infty}^{0} W(t)\,dt}$$

where W(t) is a statistical weight implied by the sampling methodology and formal assumptions. It will be useful to consider

$$W(t) = S_{\mathrm{a}}(-t)S_{\mathrm{r}}(-t) = S_{\mathrm{ar}}(-t)$$

in which case

$$\int_{-\infty}^{0} W(t) \, dt = \int_{-\infty}^{0} S_{\rm ar}(-t) \, dt = \mathbb{E}\left[\tau_{\rm r}\right]$$

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

When Recent is Forever

- BED assay may be best bet for a practical definition of 'recent'.
- But: not everyone leaves this category.

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

'General Practical' Model

Counts of infection categories

$$\begin{aligned} R_{\rm t} &= \int_{-\infty}^{0} I(t) N_{\rm s}(t) S_{\rm r}(-t) S_{\rm a}(-t) \, dt \\ L &= (1 - \mathbb{P}_{\infty}) \int_{-\infty}^{0} I(t) N_{\rm s}(t) (1 - S_{\rm r}(-t)) S_{\rm a}(-t) \, dt \\ R_{\rm f} &= \frac{\mathbb{P}_{\infty}}{(1 - \mathbb{P}_{\infty})} L \end{aligned}$$

• Unbiased estimation of $R_{\rm t}$ is possible!

$$R_{\rm t} = R_{\rm o} - \frac{\mathbb{P}_{\infty}}{(1 - \mathbb{P}_{\infty})}L$$

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

Constant Number of Susceptibles

If $N_{\rm s}(t) = n_0$ then

$$R_{t} = \frac{n_{0} \int_{-\infty}^{0} I(t) S_{ar}(-t) dt}{\mathbb{E} [\tau_{r}]} \mathbb{E} [\tau_{r}]$$
$$= n_{0} I_{ar} \mathbb{E} [\tau_{r}]$$

Hence

$$I_{\rm ar} = \frac{R_{\rm t}}{n_0 \mathbb{E}\left[\tau_{\rm r}\right]}$$

is an unbiased estimator.

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

When $N_{\rm s}(t)$ is Non-Constant

- ▶ It is not possible to obtain unbiased estimator for I_w with non-constant I(t) and non-constant $N_s(t)$.
- ▶ Need to assume specific functional forms for $N_{\rm s}(t)$ and I(t).
- Can infer up to two parameters in I(t), $N_{\rm s}(t)$.
- ▶ In the case where $I(t) = i_0$ and $N_{\rm s}(t) = n_0 + n_1 t$ we recover

$$I_{\rm w} = i_0 = \frac{R_{\rm t}}{n_0 \mathbb{E}\left[\tau_{\rm r}\right] - \frac{n_1}{2} \mathbb{E}\left[\tau_{\rm r}^2\right]}$$

What Can We Hope to Know? Modelling the 'Forever Recent' Infection Equilibrium Population Dynamics Beyond Equilibrium Population Dynamics

When $N_{\rm s}(t)$ and I(t) are Both Non-constant

Even the simple case of

 $N_{\rm s}(t) = n_0 + n_1 t$ and $I(t) = i_0 + i_1 t$

requires calibration for $\mathbb{E}\left[\tau_{r}^{2}\right]$, $\mathbb{E}\left[\tau_{r}^{3}\right]$ and $\mathbb{E}\left[\tau_{a}\right]$, which seems impossible.

But: we can use a simple formula and then see how wrong it is when we violate the assumptions under which it would be correct.

Analytical Simulations

Introduction

- 2 General Relations
- 3 Practical Models
- 4 Bias From Simplification
 - Analytical
 - Simulations
- 5 Statistical Considerations
- 6 The Long Term View

Analytical Simulations

Closed-Form Calculation of Bias

• Declare
$$I(t)$$
, $N_{\rm s}(t)$, $\rho_{\rm a}(t)$ and $\rho_{\rm r}(t)$.

- Evaluate I_{ar} from knowledge of declared inputs.
- Evaluate naive formula to estimate *I*:

$$I_{\rm est} = \frac{R_{\rm t}}{\mathbb{E}\left[\tau_{\rm r}\right] N_{\rm s}(0)}$$

▶ Compare I_{ar} and I_{est} .

 Note bias as a function of parameters which break assumption in naive formula.

Analytical Simulations

Alex Welte Incidence from 'Recent Infection' Prevalence

Analytical Simulations

Alex Welte Incidence from 'Recent Infection' Prevalence

Analytical Simulations

Matlab Simulations

- ▶ Produce infection events according to $\lambda(t) = N_{s}(t)I(t)$.
- Obtain samples after 'burn-in' time.
- Confirms analytical results.
- Can explore sample-path specific $I_{\rm w}$.
- ► Can combine sample size effects with sample path effects.
- ► Future implementation of hierarchical Bayesian inference.

Analytical Simulations

Alex Welte

Incidence from 'Recent Infection' Prevalence

Sample Sizes Calibration

Introduction

- 2 General Relations
- 3 Practical Models
- ④ Bias From Simplification
- Statistical Considerations
 Sample Sizes
 - Calibration

Sample Sizes Calibration

How Big Must Surveys Be?

- Precision limiting step in a survey is the count of recent infections.
- ▶ Need to find tens of recent infections for reasonable precision.
- Example: suppose we wish to distinguish I = 0.05 confidently from I = 0.04, then:
 - BED definition of recent leads to $N\sim 5000.$
 - RNA+/AB- definition of recent leads to $N\sim 100000.$

Sample Sizes Calibration

Determining $S_{\mathrm{ar}}(t)$ and \mathbb{P}_{∞}

- ▶ Most important parameter is P_∞.
- Need to observe this 'failure to progress' several tens of times in a calibration study.
- ▶ Need to estimate the mean of S_{ar}(t) in a cohort censored for progression.
- Non equilibrium formulas require estimation of long term survival times or short term standard deviations.

1 Introduction

- 2 General Relations
- 3 Practical Models
- ④ Bias From Simplification
- 5 Statistical Considerations
- 6 The Long Term View

Long Term Incidence Surveillance

- ► Can't run from the need for incidence surveillance.
- There is no magic bullet.
- ▶ BED type definition is perhaps the best short term option.
- Just discussed 'one-shot' methods.
- ▶ Need to set up open ended calibration.
- Need to manage multi-survey meta analysis to:
 - construct informative 'priors';
 - calibrate demographic/epidemiological parameters.