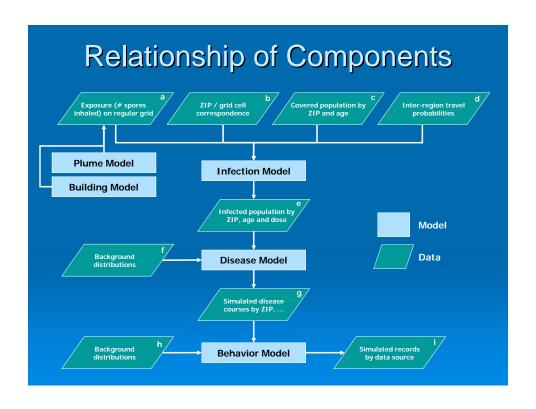
Evaluation of Outbreak Detection: Issues in Developing Test Data

David Buckeridge, MD MSc Palo Alto VA Health Care, Palo Alto, CA Stanford Medical Informatics, Stanford, CA david.buckeridge@stanford.edu

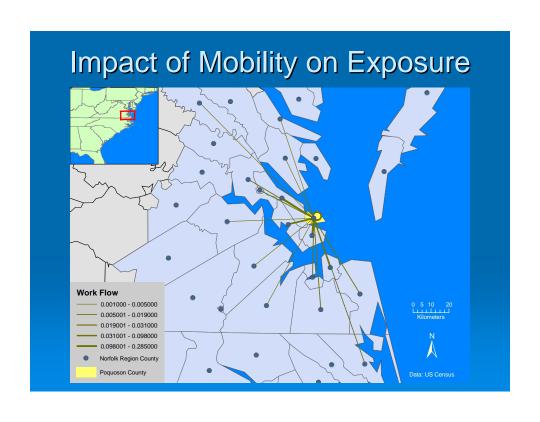
Many Contributors

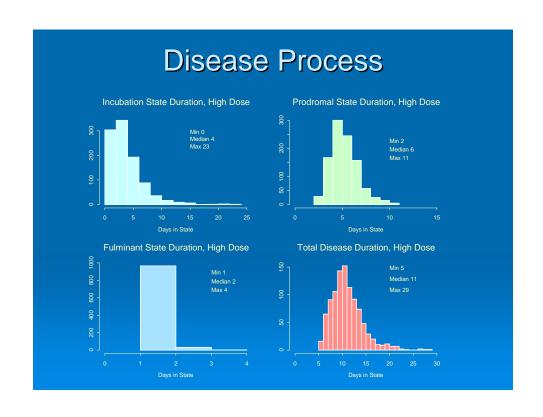
Howard Burkom (JHU / APL)
Andrew Moore (CMU)
Julie Pavlin (WRAIR)
Mark Musen (Stanford)
Paul Switzer (Stanford)
David Siegrist (Potomac Institute)
Tag Cutchis (JHU / APL)
Bill Hogan (University of Pittsburgh)

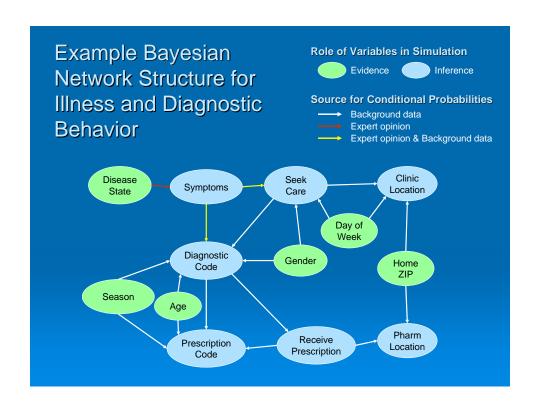
The Importance of Test Data


- > Validity of evaluation depends on test data
- > Test data contain 'marked-up' outbreaks
 - Start and stop
 - Point of successful detection
 - (Type of outbreak)
- > Three general types of test data
 - Wholly authentic
 - Wholly simulated
 - Authentic background, simulated outbreaks

Comparison of Test Data Types


Туре	Advantages	Disadvantages
Wholly authentic	•Face validity	Resources for defining outbreaks Validity and reliability of definition Limited number / variety of outbreaks
Wholly simulated	 Ability to specify outbreak Large number / variety of outbreaks Sensitivity analyses 	 Need to simulate background data Need to simulate outbreak Validity of simulation questionable as complexity increases
Authentic background, simulated outbreak	 Retains realism of authentic data Retains most advantages of wholly simulated approach 	 Need to simulate outbreak Need to 'fit' outbreak to background Validity of simulation questionable as complexity increases


A Modeling Framework for the "Injection" Approach


- Exposure process
 - Introduction of the disease agent into the population
 - Transmission of the disease agent if communicable
- > Infectious process
- > Disease process
 - Progression of infected individuals through disease
 - · Linkage of disease states to illness behavior
- > Illness and diagnostic behaviors
 - Behavior of ill individuals
 - Behavior of health care system

Algorithms and Evaluation Goals Drive Test Data Requirements

- > Algorithms
 - Space, individual-level covariates
 - Most 'complex' algorithm sets requirements
- Evaluation goals
 - Algorithm development
 - Surveillance system development
 - Disease control policy