RODS and Multiple Data Streams

Greg Cooper	Professor	Computer Science and RODS lab, U. Pitt	gfc@cbmi.upmc.edu
Bill Hogan	Assistant Professor	RODS lab, U. Pitt	wrh@cbmi.pitt.edu
Andrew Moore	Professor	Computer Science, Carnegie Mellon	awm@cs.cmu.edu
Daniel Neill	Graduate Student	Computer Science, Carnegie Mellon	neill@cs.cmu.edu
Jeff Schneider	Research Professor	Computer Science, Carnegie Mellon	schneide@cs.cmu.edu
Rich Tsui	Research Professor and associate Director of RODS lab	RODS lab, U. Pitt	tsui@cbmi.pitt.edu
Mike Wagner	Professor and Director of RODS lab	RODS lab, U. Pitt	mmw@cbmi.pitt.edu
Weng-Keen Wong	Graduate Student	Computer Science, Carnegie Mellon	wkw@cs.cmu.edu

RODS: <u>http://www.health.pitt.edu/rods</u> Auton Lab: <u>http://www.autonlab.org</u>

An interesting feature of large Biosurveillance Programs:

Multiple, rich, new streams of data

Other New Algorithmic Developments

WSARE v2.0

 Inputs:
1. Date/time-indexed biosurveillancerelevant data stream
2. Time Window Length
3. Which attributes to use?
3. And here's

• Outputs: 1. Here are the records that most surprise me

2. Here's why

3. And here's how seriously you should take it

Primary Key	Date	Time	Hospital	ICD9	Prodrome	Gender	Age	Home			Work			Recent	Recent	(Many
								Large Scale	Medium Scale	Fine Scale	Large Scale	Medium Scale	Fine Scale	Flu Levels	Weather	more)
h6r32	6/2/2	14:12	Down- town	781	Fever	М	20s	NE	15217	A5	NW	15213	B8	2%	70R	
t3q15	6/2/2	14:15	River- side	717	Respirat ory	Μ	60s	NE	15222	J3	NE	15222	J3	2%	70R	
t5hh5	6/2/2	14:15	Smith- field	622	Respirat ory	F	80s	SE	15210	К9	SE	15210	K9	2%	70R	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

WSARE v2.0

- "Taking into account recent flu levels..."
- "Taking into account that today is a public holday..."
- "Taking into account that this is Spring..."
- "Taking into account recent heatwave..."
- "Taking into account that there's a known natural Food-borne outbreak in progress..."

Bonus: More efficient use of historical data

Idea: Bayesian Networks

Results on Simulation

Conclusion

- One approach to biosurveillance: one algorithm monitoring millions of signals derived from multivariate data instead of Hundreds of univariate detectors
- Modeling historical data with Bayesian Networks to allow conditioning on unique features of today
- Computationally intense unless we're tricksy!

Other New Algorithmic Developments

 Theoretical complexity of fast squares: O(N²) (as opposed to naïve N³), if maximum density region sufficiently dense.

If not, we can use several other speedup tricks.

• In practice: 10-200x speedups on real and artificially generated datasets.

Emergency Dept. dataset (600K records): 20 minutes, versus 66 hours with naïve approach.

 Theoretical complexity of fast rectangles: 18N²log N (as opposed to naïve 18N⁴)

(Angles discretized to 5 degree buckets)

Why the Scan Statistic speed obsession?

- Traditional Scan Statistics very expensive, especially with Randomization tests
- "Historical Model" Scan Statistics
- Proposed new WSARE/Scan Statistic hybrid

Why the Scan Statistic speed obsession?

- Traditional Scan Statistics very expensive especially with Randomization tests
- "Historical Model" Scan Statistics
- Proposed new WSARE/Scan Statistic hybrid

Why the Scan Statistic speed obsession?

- Traditional Scan Statistics very expensive, especially with Randomization tests
- "Historical Model" Scan Statistics
- Proposed new WSARE/Scan Statistic hybrid

This is the strangest region because the age distribution of respiratory cases has changed dramatically for no reason that can be explained by known background changes

PANDA: A Few Details about Its Current Status

- Data consists of census information about a population, plus emergency department (ED) information about patients
- The *population* currently being modeled consists of all ~1.4M people in Allegheny County
- The outbreak being modeled is roughly based on an airborne anthrax release – it requires (and will receive) significant refinement and extension.

Other New Algorithmic Developments

Example Model for "Anthrax-like" Airborne Release

Calculating Probability of a Release

$$P(\mathbf{E} | \mathbf{I}) = P(\mathbf{E}_1^1, \mathbf{E}_2^1, \mathbf{E}_2^2, \mathbf{E}_2^2 | \mathbf{I})$$

= $P(\mathbf{E}_1^1 | \mathbf{I}) \cdot P(\mathbf{E}_2^1 | \mathbf{I}) \cdot P(\mathbf{E}_1^2 | \mathbf{I}) \cdot P(\mathbf{E}_2^2 | \mathbf{I})$ (Assumption 3)
= $P(\mathbf{E}^1 | \mathbf{I})^2 \cdot P(\mathbf{E}^2 | \mathbf{I})^2$

Equivalence Classes

Millions of people in a population can be partitioned into 48,000 or fewer equivalence classes

Conclusions

- The easy way to combine data streams is to insert them into one relational table.
- Can do spatial scans that evaluate multiple sources per region.
- Can use a huge probabilistic model to rationally combine multiple data streams.

E.G. WSARE

E.G. Panda

RODS: <u>http://www.health.pitt.edu/rods</u> Auton Lab: <u>http://www.autonlab.org</u>

Conclusions

- The easy way to combine data streams is to insert them into one relational table.
- Can do spatial scans that evaluate multiple sources per region.
- Can use a huge probabilistic model to rationally combine multiple data streams.

E.G. WSARE

E.G. Panda

Challenge: Managing complexity Challenge: Computational tractability

RODS: <u>http://www.health.pitt.edu/rods</u> Auton Lab: <u>http://www.autonlab.org</u>