DIMACS Workshop Opening-Closing Comments

Stephen E. Fienberg Department of Statistics & Center for Automated Learning and Discovery Carnegie Mellon University Pittsburgh, PA, U.S.A.

Some Integrative Themes

- Integrating diverse data sources
- Privacy/confidentiality
- Data across time and space
- Signal detection and setting cutoffs
- Datamining to the rescue?
- Models and methods of inference

Integrating Diverse Data Sources

- Public health data/non-traditional data
 - Grocery store sales
 - Pharmacy sales
 - School attendance records
- Matching records/identifiers?
 - Fellegi–Sunter and modern Bayesian embellishments
 - Capture-recapture methods for estimating population totals of exposure and infection

What Do Following Populations Have in Common?

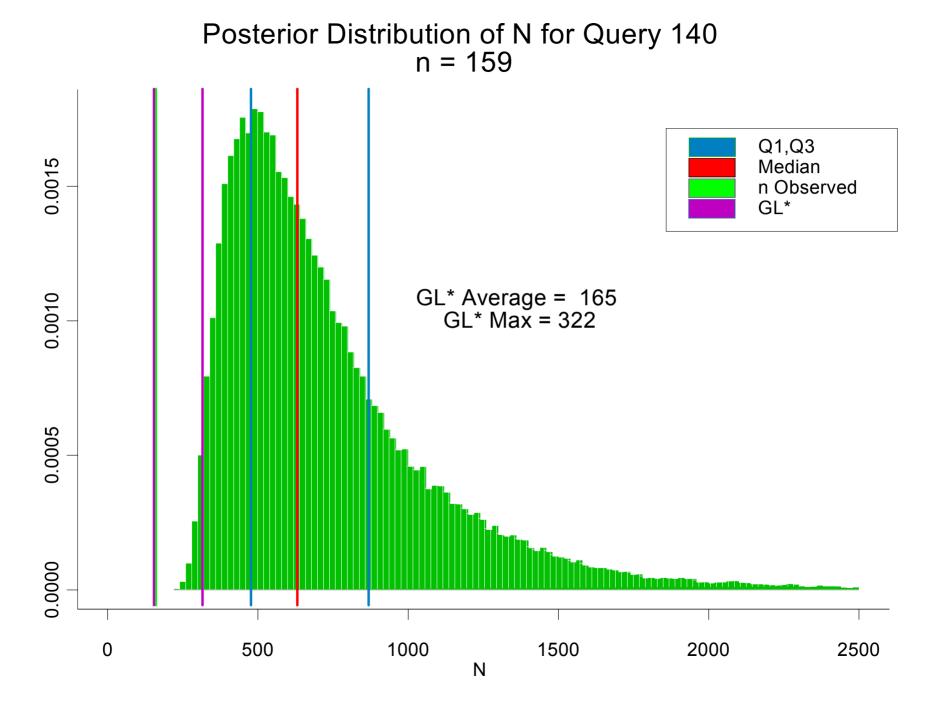
- Fish
- Penguins
- Homeless
- Prostitutes in Glasgow
- Italians with diabetes
- Atrocities in Kosovo

- People in the U.S.
- People infected with HIV virus
- Adolescent injuries in Pittsburgh, PA
- WWW

Multiple List Data for Query 140

<i>n</i> =159						Northern Light							
						yes				no			
						Lycos			Lycos				
						yes		no		yes		no	
						HotBot		HotBot		HotBot		HotBot	
						yes	no	yes	no	yes	no	yes	no
AltaVista	yes	Infoseek	yes	Excite	yes	1	0	2	0	0	0	1	0
					no	2	0	3	2	0	0	0	2
			no	Excite	yes	1	0	2	1	0	0	3	4
					no	1	3	0	8	2	0	3	19
	no	Infoseek	yes	Excite	yes	0	0	0	1	0	0	0	0
					no	0	0	1	1	0	0	5	4
			no	Excite	yes	0	0	0	1	0	0	4	22
					no	0	0	7	17	2	3	31	⁵ ?

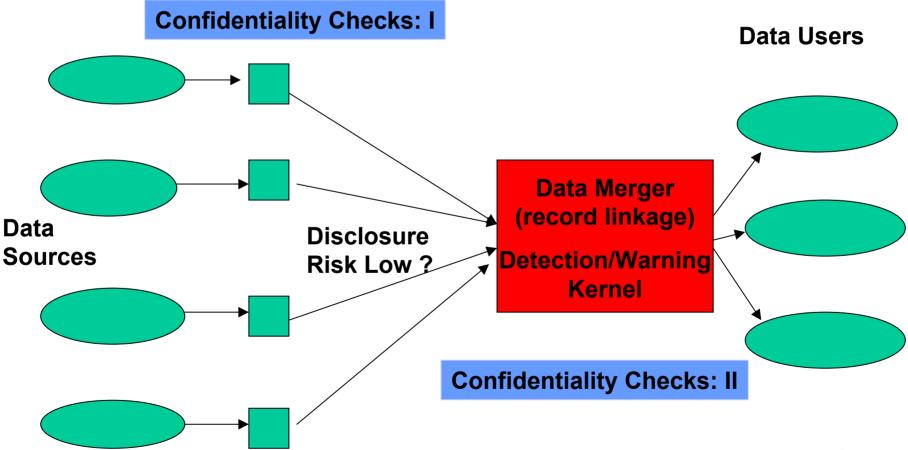
Simple Models Often Work


• Let the y_{ij} 's be independent r.v.'s, with

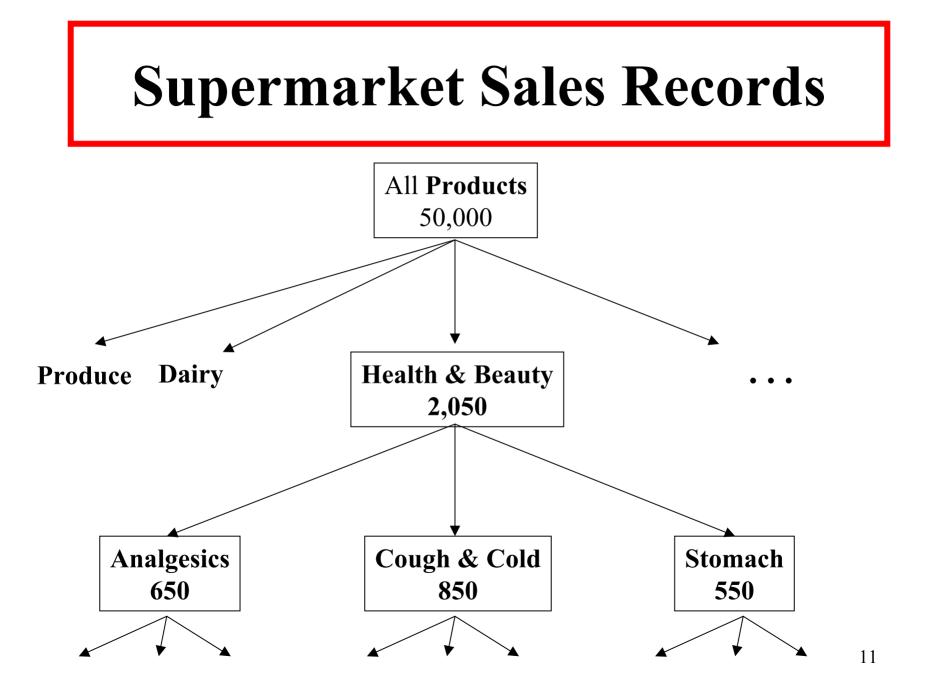
$$p_{ij} = \Pr\{y_{ij} = 1\}$$

for page *i* observed in list *j*, where

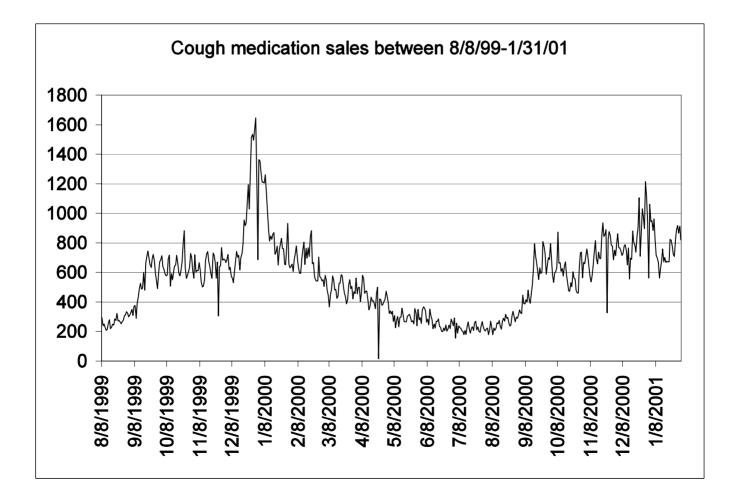
$$\log \{ p_{ij} / (1 - p_{ij}) \} = \theta_i + \beta_j \quad i = 1, 2, ..., N; j = 1, 2, ..., k.$$


•If we take into account individual heterogeneity represented by $\{\theta_i\}$, samples are "independent."

Privacy/Confidentiality

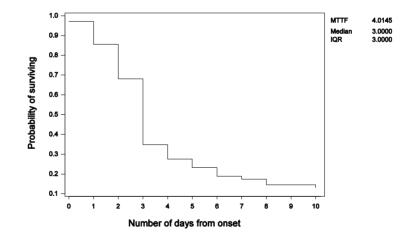

- Matching records raises major issues of privacy and confidentiality
 - Can we integrate sources without identifiers?
 - Role of intermediaries for linkage and then application of disclosure limitation methods

Conceptual Confidentiality Kernel



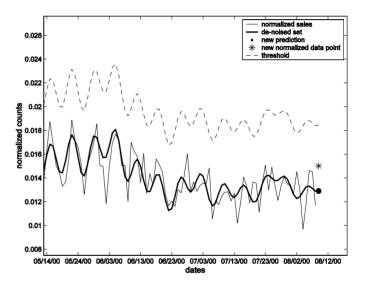
Time and Space

- Recording timing of occurrence of events is crucial component of data
- Data result in multivariate time series or point processes for events/purchases/reports
 - Multiple products purchased
 - Doctors visits
 - School absences
- Spatial information makes data sparser
- Crude counts versus individual records


Confounding Natural Periodicities

Signal Detection

- Adverse events → Discovery of cause
 - e.g., detecting signature of outbreak in response to anthrax attack


Survival Plot for the time between onset and death, based on Svedlovsk data

- What about alternative explanations?

Setting Detection Cutoffs

• Fixed thresholds?

- Tradeoff between false positives and false negatives
- Nature of followup?
 - Back to privacy issues again

What Are We Looking For?

- Anticipating specific problems, e.g., in response to smallpox vaccination campaign
- Surveillance systems to measure everything

Datamining to the Rescue?

- Bad News:
 - For broad based screening and surveillance, p>>n and we encounter curse of dimensionality
 - Model selection on large numbers of features has major problems
- Good News:
 - For prediction we may be willing to settle for black box (or at least gray box) predictions
 - Datamining methods may turn out to be useful here but jury is out

Models and Inference Methods

- Black box approaches (including simple "robust" methods) versus models for underlying phenomena
- Frequentist vs. Bayesian methods
 - Specifying likelihood is hard
 - Picking priors based on real information or for smoothing is relatively easy
- First get statistical tools that work, and *then* figure out how to move them into the field or to approximate