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Motivation

* “Modern” data are very high dimensional

® |n order to be “learnable,” there must be lower-dimensional
structure

* Developing practical algorithms with theoretical guarantees
for beating the curse of (apparent) dimensionality is a main
scientific challenge for our field



Motivation

® Sparsity is emerging as a key concept in statistics and
machine learning

e Dramatic progress in recent years on understanding
sparsity in parametric settings

* Nonparametric sparsity: Wide open



Outline

* High dimensional learning: Parametric and nonparametric
e Rodeo: Greedy, sparse nonparametric regression

e Extensions of the Rodeo



Parametric Case: Variable Selection in
Linear Models

d
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where d might be larger than n. Predictive risk
R = E<Ynew - Xgewﬁ)Q-

Want to choose subset (X, : j € S5), 5 C {1,...,d} to make R small.
Bias-variance tradeoft:

small S — Bias T Variance |

large S = Bias | Variance



Lasso/Basis Pursuit

(Chen & Donoho, 1994; Tibshirani, 1996)

Z;-l:l |3;| <t Level sets of squared error

For orthogonal designs, solution given by soft thresholding

A

B; = sign(8;) (1851 — M),



Convex Relaxations for Sparse
Signal Recovery

Desired problem:

min || 5]]o

such that || X5 — y|l» <€
Requires intractable combinatorial optimization.
Convex optimization surrogate:

min || 5]

such that | X3 — y|lo <€

Substantial progress recently on theoretical justification

(Candes and Tao, Donoho, Tropp, Meinshausen and Bihlmann, Wainwright,
Zhao and Yu, Fan and Peng,...)



Nonparametric Regression

Given (Xl, Yl), Ceey (Xn, Yn) where
5/2' ER) XZ — (X1i7°°'7Xdi)T ERd)

)/ji :m(X1i7°'°7Xdi)+€i7 E(EZ) =0

Risk:

Minimax theorem:
1 4/(4+d)
inf sup R(m,m) =< (—)
™m mej_" n

where F is class of functions with 2 smooth derivatives. Note the
curse of dimensionality.
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The Curse of Dimensionality

(Sobolev space of order 2)

d=120 Risk = 0.01

1e+12

sample size
6e+11 8e+11

4e+11

2e+11

0e+00

1e+02

1e+04 1e+06 1e+08 10 12 14 16 18

sample size




Nonparametric Sparsity

In many applications, reasonable to expect true function
depends only on small number of variables

Assume
m(x) = m(xgr)

where xr = (x;),;er are the relevant variables with |R| =
r <d

Can hope to achieve the better minimax rate n—4/(4+7)

Challenge: Variable selection in nonparametric regression



Rodeo: Regularization of
derivative expectation operator

A general strategy for nonparametric estimation:
Regularize derivatives of estimator with respect to
smoothing parameters

A simple new algorithm for simultaneous bandwidth and
variable selection in nonparametric regression

Theoretical analysis: Algorithm correctly determines
relevant variables, with high probability, and achieves
(near) optimal minimax rate of convergence

Examples showing performance consistent with theory



Key ldea in Rodeo:
Change of Representation



Rodeo: The Main Ildea

Use a nonparametric estimator based on a kernel

Start with large bandwidths in each dimension, for an
estimate having small variance but high bias

- Choosing large bandwidth is like ignoring a variable

Compute the derivatives of the estimate with respect to
bandwidth

Threshold the derivatives to get a sparse estimate

Intuition: If a variable is irrelevant, then changing the
bandwidth in that dimension should only result in a small
change in the estimator



Rodeo: The Main Idea

Rodeo path

Start

Ideal path
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Using Local Linear Smoothing

The estimator can be written as

Our method is based on the statistic

Z; 8mh ZG (X, z,h)Y,

The estimated variance is

S? =Var(Z;| Xy,...,X,) = 0" ZG?(Xi,x,h)
i=1



Rodeo: Hard Tresholding Version

1. Select parameter 0 < 6 < 1 and initial bandwidth h.

2. Initialize the bandwidths, and activate all covariates:
(@) hj =ho,j=1,2,...,d.
(b) A=4{1,2,....d}
3. While A is nonempty, do for each j € A:
(a) Compute estimated derivative expectation: Z, and s;

(b) Compute threshold A\; = s;1/2logn.
(c) If |Z;| > \;, set h; — (Bh;; otherwise remove j from A.

4. Output bandwidths h* = (hq, ..., hg) and estimator

~

m(x) = mp«(x)



Bandwidth

Example: m(z) = 2(z; +1)° + 25sin(10z,), d

20

Average over 50 runs Typical Run

e o |
S - Q
S - ©

<

S

=

©

C

3
S 3 -
3 -
< o
o S -

I I I I I I

2 4 6 8 10 12 14

Rodeo Step Rodeo Step



0.10

0.08

0.06

0.04

0.02

0.00

Loss with r=2, Increasing Dimension

I I I I I I I I I I I
5 10 15 20 25 30 10 15 20 25 30
Leave-one-out cross-validation Rodeo



Main Result: Near Optimal Rates

Theorem. Suppose that d = O(logn/loglogn), hg = 1/loglogn, and
im;;(z)| > 0. Then the rodeo outputs bandwidths h* that satisfy

P(h; = hoforallj>r) —1
and for every € > 0,
P (n—l/(4—|—7°)—6 < hj < pV@+)+e for all j < 7,) 1

Let T,, be the stopping time of the algorithm. Then
Pty <T, <ty)— 1where

4 1 o nAmin
YT r+4)1og(1/8) 2 log n(loglogn)?

s 1 o NAmax
YT (r+4)log(1/P8) 2 log n(log logn)?



Greedy Rodeo and LARS

Rodeo can be viewed as a nonparametric version of least
angle regression (LARS), (Efron et al., 2004)

In forward stagewise, variable selection is incremental.
LARS adds the variable most correlated with the residuals
of the current fit.

For the Rodeo, the derivative is essentially the correlation
between the output and the derivative of the effective
kernel

Reducing the bandwidth is like adding more of that
variable
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LARS Regularization Paths

Standardized Coefficients
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Bandwidth
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Greedy Rodeo Step

Rodeo order: 3 (body mass index), 9 (serum), 7 (serum), 4 (blood pressure), | (age),
2 (sex), 8 (serum), 5 (serum), 10 (serum), 6 (serum).

LARS order: 3,9,4,7,2, 10,5, 8,6, |.
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Extensions

Sparse density estimation

Local polynomial estimation

Classification using Rodeo with generalized linear models
Other nonparametric estimators

Data-adaptive basis pursuit
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Combining Rodeo and Lasso:
Data-Adaptive Basis Pursuit

(with Han Liu)
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Data-Adaptive Basis Pursuit

e Recall idea of Rodeo:
1
i) = () ~ | (Z(ahs), bs)ds
0
o Let &(X;) =vec(Z(X;,h(sk))-dh(sk)) over a grid of bandwidths

e Run the Lasso:

min Y = 8(X)5):

such that 16]1 <t
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Summary

Sparsity is playing an increasingly important role in
statistics and machine learning

In order to be “learnable,” there must be lower-
dimensional structure

Nonparametric sparsity: many open problems.

Rodeo: conceptually simple and practical, theoretically
nice properties.
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