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OUTLINE

• The challenge of semantic information for knowledge systems

• Large computational ontologies

– Analysis

– Induction

– Interoperability

• Order theoretical approaches

– Ontology anlaysis

– Concept lattices: Formal Concept Analysis
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APPLICATION CHALLENGES

Decision Support: Military, intelligence, disaster response

Intelligence Analysis: Multi-Int integration: IMINT, HUMINT,

SIGINT, MASINT, etc.

Biomedicine: Biothreat response

Defense Applications: Defense transformation, situational aware-

ness, global ISR

Bibliometrics: Digital libraries, retrieval and recommendation

Simulation: Interaction with knowledge management/decision

support environments

Nonproliferation: “Ubiquitous sensing”, information fusion
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KNOWLEDGE SYSTEMS
• Challenge for database integration at the knowledge level:

Connectivity: Wiring everything up, everything accessible

Interoperability: Knowing what you have and where it is
• Complement quantitative statistical techniques with qualita-

tive methods:

– Knowledge representation, natural language processing

– Search, retrieval, inference

– Focus on the meaning (semantics) of information in databases:
use, interpretation

• In conjunction with existing capabilities in data mining, ma-
chine learning, sensor technology, simulation, etc.

– Knowledge-based and data-rich sciences: Biology, as-
tronomy, earth science

– Knowledge-based technologies for national security:
Decision support, intelligence analysis

– Knowledge-based technologies supporting the scien-
tific process: Semantic web, digital libraries, publication
process, communities of networked scientists
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MULTI-MODAL DATA FUSION

• Qualitative difference:

Sensors:

– Physics sensors: nuclear, radiological, chemical

– Electromagnetic spectrum

– Acoustic, seismic

– Images, video

Information Sources:

– Geospatial

– Structured and semi-structured data

– Relational databases

– Text, documents

– Plans, scenarios

• How to bridge?

– Meta-data

– Feature extraction from signals, images

– Feature ontologies and interoperability protocols
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LANL KNOWLEDGE AND
INFORMATION SYSTEMS SCIENCE

http://www.c3.lanl.gov/knowledge

Semantic Hierarchies for Knowledge Systems
• Representations of semantic and symbolic information

• Approach from mathematical systems theory:

– Discrete math, combinatorics, information theory

– Metric geometry approach to order theory (lattices and
posets)

• Hybrid methodologies combining statistical, numerical, and
quantitative with symbolic, logical, and qualitative

• Ontologies and Conceptual Semantic Systems: Discrete
mathematical approaches

• Computational Linguistics and Lexical Semantics: For
natural language processing and text extraction

• Database Analysis: User-guided knowledge discovery in
complex, multi-dimensional data spaces

• Software Architectures: Parallel and high performance al-
gorithms
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PARADIGM: SEMANTIC NETWORKS

• Lattice-

labeled

directed

multi-graphs

• Increasing

size and

prominence

for

databases:

Intelligence

analysis, law

enforcement,

computa-

tional

biology
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• Challenges: Typed-link network theory; morphisms of typed

graphs; ontology analysis, induction, and interoperability.
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REASONING WITHIN ONTOLOGIES FOR
THE SEMANTIC WEB

• Proposed ba-

sis for Seman-

tic Web

• Ontological

database:

interacting

hierarchies of

objects and

relations
Trip(Traveler:By)

Event(When:Time)

Arrive(To:Place)Depart(From:Place)

Action(By:Entity)

RelationsObjects

Entity

Animal

Person(Name)

Traveler

President(Country)

President-of-the-USA:
President(USA)

Place

Country

Vietnam USA

• Semantic relations valued on objects

• Description-logic queries
Who was the last president before Clinton to visit Vietnam?

>>: (Name(By)) ( Trip?x ( To:Vietman, By:President-of-the-USA )

.and. lub(When(x)) ≤ 1992)
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BIO-ONTOLOGIES
• Domain-specific concepts, together with how they’re related

semantically
• Crushing need driven by the genomic revolution
• At least:

– Large terminological collections (controlled vocabularies,
lexicons)

– Organized in taxonomic, hierarchical relationships
• Sometimes in addition: Methods for inference over these struc-

tures
• Molecular, anatomy, clinical, epidemiological, etc.:

Gene Ontology: Molecular function, biological process, cel-
lular location

Fundamental Model of Anatomy

Unified Medical Language System: National Library of Medicine,
meta-thesaurus

Open Biology Ontologies

MEdical Subject Headings (MeSH)

Enzyme Structures Database: EC numbers
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GENE ONTOLOGY (GO):
DNA METABOLISM PORTION

• Taxonomic

controlled

vocabulary

• ∼ 20K nodes

populated by

genes, proteins

• Two orders

≤isa,≤has

• Major community

effort: assuming

primary position

in general

bioinformatics

Gene Ontology Consortium (2000): “Gene Ontology: Tool
For the Unification of Biology”, Nature Genetics, 25:25-29

• Tremendous computational resource: large, semantically rich,
validated, middle ontology, first (?) in major use
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CATEGORIZATION IN THE
GENE ONTOLOLGY

http://www.c3.lanl.gov/posoc

• Develop functional hypotheses about hundreds of genes iden-

tified through expression experiments

• Given the Gene Ontology (GO) . . .

• And a list of hundreds of genes of interest . . .

• “Splatter” them over the GO . . .

• Where do they end up?

– Concentrated?

– Dispersed

– Clustered?

– High or low?

– Overlapping or distinct?

• POSet Ontology Categorize (POSOC)

C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) “The Gene Ontology Categorizer”,
Bioinformatics, v. 20:s1, pp. 169-177
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WHOLE GO CA. 2001

Courtesy of Robert Kueffner, NCGR, 2001
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GO PORTION, HIERARCHICAL EYECHART
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HIERARCHIES AS
PARTIALLY ORDERED SETS

ChainAntichain

Directed
Graph

Lattice

Tree

Partial Order =
Poset = DAG

• Partial Order: Set P ; relation ≤⊆
P2: reflexive, anti-symmetric, tran-

sitive

• Poset: P = 〈P,≤〉
• Simplest mathematical structures

which admit to descriptions in

terms of “levels” and “hierarchies”

• More specific than graphs or net-

works: no cycles, equivalent to Di-

rected Acyclic Graphs (DAGs)

• More general than trees, lattices:

single nodes, pairs of nodes can

have multiple parents

• Ubiquitous in knowledge systems:

constructed, induced, empirical
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BASIC POSET CONCEPTS

Poset: P = 〈P,≤〉
Comparable Nodes: a ∼ b := a ≤ b or b ≤ a

Up-Set: ↑a = {b ≥ a}, Down-Set: ↓a = {b ≤ a}
Chain: Collection of comparable nodes: a1 ≤ a2 ≤ . . . ≤ an

Height: Size maximal chain H(P)

Noncomparable Nodes: a 6∼ b

Antichain: Collection of noncompara-

ble nodes: A ⊆ P, a 6∼ b, a, b ∈ A

Width: Size maximal antichain W(P)

Interval: [a, b] := {c ∈ P : a ≤ c ≤ b}, a

bounded sub-poset of P
Join, Meet: a ∨ b, a ∧ b ⊆ P

Lattice: Then a ∨ b, a ∧ b ∈ P

Bounded: Min 0 ∈ P , Max 1 ∈ P

B

F G

A

I

H

C

E J

D

1

K

0

. Schröder, BS (2003): Ordered Sets, Birkhäuser, Boston
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SOME GO QUANTITATIVE MEASURES

Nodes Leaves Interior Edges H W
MF 7.0K 5.6K 1.3K 8.1K 13 ≥ 3.5K
BP 7.7K 4.1K 3.6K 11.8K 15 ≥ 2.9K
CC 1.3K 0.9K 0.4K 1.7K 13 ≥ 0.4K
GO 16.0K 10.6K 5.4K 21.5K 16 ≥ 5.9K
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Joslyn, Cliff; Mniszewski, SM; Verspoor, KM; and JD Cohn: (2005) “Improved Order The-
oretical Techniques for GO Functional Annotation”, poster at 2005 Conf. on Intelligent
Systems for Molecular Biology (ISMB 05)

C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) “The Gene Ontology Categorizer”,
Bioinformatics, v. 20:s1, pp. 169-177
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CHAIN DECOMPOSITION OF INTERVALS

Comparable Nodes: e.g. D ≤ 1 ∈ P

Chain Decomposition: Set of all chains connecting them:

C(D, 1) = {Cj}
= {D ≺ E ≺ I ≺ B ≺ 1, D ≺ E ≺ I ≺ C ≺ 1,

D ≺ E ≺ K ≺ 1, D ≺ J ≺ C ≺ 1,

D ≺ J ≺ K ≺ 1} ⊆ 2P

Chain Lengths: hj := |Cj| − 1

Vectors of Chain Lengths:
~h(a, b) :=

〈
hj

〉M

j=1
=

〈4,4,3,3,3〉
Extremes:

h∗(a, b) = min
hj∈~h(a,b)

hj = 3

h∗(a, b) = max
hj∈~h(a,b)

h=4
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INTERVAL RANK LAYOUT

• Interval valued vertical position

(rank)

• Chain decomposition guides

horizontal: short maximal

chains to outside

CA Joslyn, SM Mniszewski, SA Smith, and PM
Weber: (2006) “SpindleViz: A Three Dimensional,
Order Theoretical Visualization Environment for
the Gene Ontology”, Joint BioLINK and 9th
Bio-Ontologies Meeting (JBB 06)
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CATEGORIZATION METHOD

• POSO: POSet Ontology

O := 〈P, X, F 〉 ,P = 〈P,≤〉
Labels: finite, non-empty set X

Labeling Function: F :X 7→ 2P

• Given labels (genes) c, e, i . . .

• What node(s)

P = {A, B, C, . . . , K} are best to

pay attention to?
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• Scores to rank-order nodes wrt/gene locations, balancing:

– Coverage: Covering as many genes as possible

– Specificity: But at the “lowest level” possible

• “Cluster” based on non-comparable high score nodes
C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) “The Gene Ontology Categorizer”,
Bioinformatics, v. 20:s1, pp. 169-177
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AUTOMATED ONTOLOGICAL PROTEIN
FUNCTION ANNOTATION

Functions = GO

Keywords/Literature

Structures

x

Sequences

GO Branch
(BP,MF,CC)

x1
x2

y

Annotations
F(x1) Annotations

F(x2)

POSOC
G(y)

POSOC
G(y)

Unknown
Protein y

Near BLAST
neighbord

POSOC
G(x1)

GO:1

GO:2

GO:3

GO:4

BLAST Space

• Mappings among regions of biological spaces . . .
• . . . into spaces of biological functions
• POSOC annotated BLAST neighborhoods of new proteins
• How to measure quality of inferred annotations?

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) “Categorization Approach
to Automated Ontological Function Annotation”, Protein Science, v. 15, pp. 1544-1549
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HIERARCHICAL EVALUATION METRICS

• Hierarchical measures:

Precision:

HP =
1

|G(x)|
∑

b∈G(x)

max
a∈F (x)

| ↑a ∩ ↑ b|
| ↑ b|

Recall:

HR =
1

|F(x)|
∑

a∈F (x)

max
b∈G(x)

| ↑a ∩ ↑ b|
| ↑a|

F -Score:

HF =
2(HP)(HR)

HP + HR

GO Branch
(BP,MF,CC)

GO:1

GO:2

GO:3

GO:4

GO:5

GO:6 GO:7

• Example: F(x) = {GO:4}, G(x) = {GO:6}
↑a = {GO:1,GO:2,GO:4}, ↑ b = {GO:1,GO:2,GO:3,GO:5,GO:6}
HP = 2/5, HR = 3/5

S Kiritchenko, S Matwin, and AF Famili: (2005) “Functional Annotation of Genes Using
Hierarchical Text Categorization”, Proc. BioLINK SIG on Text Data Mining

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) “Categorization Approach
to Automated Ontological Function Annotation”, Protein Science, v. 15, pp. 1544-1549
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SEMANTIC SIMILARITIES
Poset P = 〈P,≤〉, probability distribution
p:P 7→ [0,1],

∑
a∈P p(a) = 1, “cumulative” β(a) :=

∑
b≤a p(a)

Resnik: δ(a, b) = maxc∈a∨b [− log2(β(c))]
Lin:

δ(a, b) =
2maxc∈a∨b[log2(β(c))]

log2(β(a)) + log2(β(b))
Jiang and Conrath:

δ(a, b) = 2 max
c∈a∨b

[log2(β(c))] − log2(β(a)) − log2(β(b))

Issues:

• General mathematical grounding in

poset metrics

• Not rely on probabilistic weighting

A Budanitsky and G Hirst: (2006) “Evaluating WordNet-
based measures of semantic distance.” Computational Lin-
guistics, 32(1), 13–47.

Lord, PW; Stevens, Robert; Brass, A; and Goble, C: (2003)
“Investigating Semantic Similarity Measures Across the Gene
Ontology: the Relationship Between Sequence and Annota-
tion”, Bioinformatics, v. 10, pp. 1275-1283
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POSET METRICS
Assume 〈P,≤〉 finite, connected, bounded

aub := ↑a ∩ ↑ b, alb := ↓ a ∩ ↓ b

Isotone Map: v:P 7→ IR, a ≤ b → v(a) ≤ v(b)

v+(a, b) := min
w∈aub

v(w)

(aub)v := {w ∈ P : v(w) = v+(a, b)}
Upper Valuation: ∀z ∈ alb,

v(a) + v(b) ≥ v+(a, b) + v(z)

Distance: v is an upper valuation iff

d(a, b) := 2v+(a, b) − v(a) − v(b)

is a distance (triangle inequality)

a b

aub

alb
z

(aub)
v

Upper Valuation Lower Valuation
z ∈ alb z ∈ aub

Isotone v(a) + v(b) ≥ v+(a, b) + v(z) v(a) + v(b) ≤ v−(a, b) + v(z)
d(a, b) = 2v+(a, b) − v(a) − v(b) d(a, b) = v(a) + v(b) − 2v−(a, b)

Antitone v(a) + v(b) ≤ v+(a, b) + v(z) v(a) + v(b) ≥ v−(a, b) + v(z)
d(a, b) = v(a) + v(b) − 2v+(a, b) d(a, b) = 2v−(a, b) − v(a) − v(b)

Monjardet, B: (1981) “Metrics on Partially Ordered Sets - A Survey”, Discrete Mathematics,
v. 35, pp. 173-184
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SOME LATTICE METRICS

Information Theoretical: Monotone

upper valuation

• Let v(a) = β(a), “cumulative”

probability

• Proposition: Jiang and Conrath is

a metric, others are not

• d(a, b) = 2β(a ∨ b) − β(a) − β(b)

• d(I, J) = 1.53, d(E, J) = 1.64

Purely Structural: Antitone upper

valuation

• | ↑ a ∩ ↑ b| = | ↑(a ∨ b)|,
| ↓ a ∩ ↓ b| = | ↑(a ∧ b)|

• Let v(a) = | ↑ a|
• d(a, b) = | ↑ a| + | ↑ b| − 2| ↑ a ∩ ↑ b|
• d(I, J) = 4, d(E, J) = 6
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INTEROPERABILITY AND ALIGNMENT

Matching: Measure similarity between

two regions of a single ontology

Comparing: Twist one ontology on a

given term set into another ordering

Merging: Given two completely

distinct ontologies:

• Identify structurally similar

regions: intersection

• Create encompassing

meta-ontologies: product or

union?
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Joslyn, Cliff: (2004) “Poset Ontologies and Concept Lattices as Semantic Hierarchies”, in:
Conceptual Structures at Work, Lecture Notes in Artificial Intelligence, v. 3127, ed. Wolff,
Pfeiffer and Delugach, pp. 287-302, Springer-Verlag, Berlin
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ALIGNMENT METHODS
Ultimate Goal: Construct order morhpisms
Neighborhoods: Around given anchors
Lexical: Matches
Structural: Nodes playing similar structural roles
Combinatoric: Sets of nodes playing similar structural roles
Poset Metrics: Measure candidate alignment, suggest new an-

chors
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FORMAL CONCEPT ANALYSIS

• Semantic

hierarchies from

relational data

• Unbiased,

graphical, visual

representation

• Hypothesis and

rule generation

and evaluation

• For ontology

induction,

interoperability

Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept Analysis, Springer-Verlag
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FCA ONTOLOGY MERGER, INDUCTION

• {g1, g2, g3}: annotated into an ontology O:
C

A B
g1 g2

g3 (g1 g2)

• {g2, g3, g4}: annotated to keywords K = {k1, k2, k3}
• Induce order on K while incoporating order on O
• Amenable to metric treatment of attributes, objects

a b c

g1
√ √

g2
√ √

g3
√

k1 k2 k3

g2
√ √

g3
√

g4
√ √

a b c k1 k2 k3

g1
√ √

g2
√ √ √ √

g3
√ √

g4
√ √

Gessler, DDG, CA Joslyn, KM Verspoor: (2007) “Knowledge Integration in Open Worlds:
Exploiting the Mathematics of Hierarchical Structure”, in preparation for ICSC 07
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