Semantic Hierarchies in Knowledge Analysis and Integration

Cliff Joslyn

Information Sciences Group

DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding of Massive and Diverse Sources of Data May 2007

OUTLINE

- The challenge of semantic information for knowledge systems
- Large computational ontologies
 - Analysis
 - Induction
 - Interoperability
- Order theoretical approaches
 - Ontology anlaysis
 - Concept lattices: Formal Concept Analysis

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 1, 5/14/2007

APPLICATION CHALLENGES

- Decision Support: Military, intelligence, disaster response
- **Intelligence Analysis:** Multi-Int integration: IMINT, HUMINT, SIGINT, MASINT, etc.
- **Biomedicine:** Biothreat response
- **Defense Applications:** Defense transformation, situational awareness, global ISR
- Bibliometrics: Digital libraries, retrieval and recommendation
- **Simulation:** Interaction with knowledge management/decision support environments
- Nonproliferation: "Ubiquitous sensing", information fusion

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 2, 5/14/2007

KNOWLEDGE SYSTEMS

- Challenge for database integration at the knowledge level: Connectivity: Wiring everything up, everything accessible Interoperability: Knowing what you have and where it is
- Complement *quantitative* statistical techniques with *qualitative* methods:
 - Knowledge representation, natural language processing
 - Search, retrieval, inference
 - Focus on the *meaning* (*semantics*) of information in databases: use, interpretation
- In conjunction with existing capabilities in data mining, machine learning, sensor technology, simulation, etc.
 - Knowledge-based and data-rich sciences: Biology, astronomy, earth science
 - Knowledge-based technologies for national security:
 Decision support, intelligence analysis
 - Knowledge-based technologies supporting the scientific process: Semantic web, digital libraries, publication process, communities of networked scientists

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 3, 5/14/2007

MULTI-MODAL DATA FUSION

• Qualitative difference:

Sensors:

- Physics sensors: nuclear, radiological, chemical
- Electromagnetic spectrum
- Acoustic, seismic
- Images, video

Information Sources:

- Geospatial
- Structured and semi-structured data
- Relational databases
- Text, documents
- Plans, scenarios
- How to bridge?
 - Meta-data
 - Feature extraction from signals, images
 - Feature ontologies and interoperability protocols

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 4, 5/14/2007

LANL KNOWLEDGE AND INFORMATION SYSTEMS SCIENCE

http://www.c3.lanl.gov/knowledge

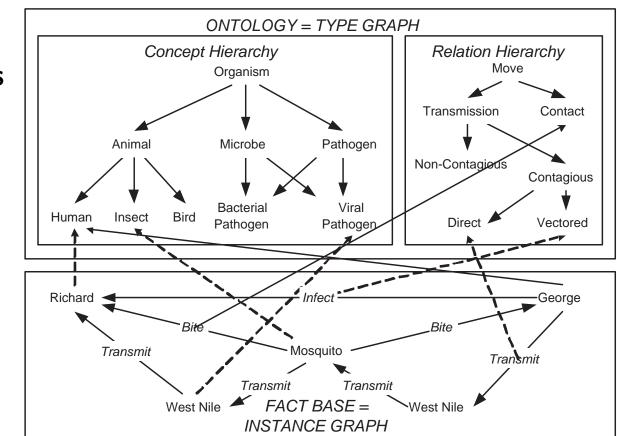
Semantic Hierarchies for Knowledge Systems

- Representations of *semantic* and *symbolic* information
- Approach from *mathematical systems theory*:
 - Discrete math, combinatorics, information theory
 - Metric geometry approach to order theory (lattices and posets)
- *Hybrid* methodologies combining statistical, numerical, and quantitative with symbolic, logical, and qualitative
- Ontologies and Conceptual Semantic Systems: Discrete <u>mathematical approaches</u>
- Computational Linguistics and Lexical Semantics: For natural language processing and text extraction
- Database Analysis: User-guided knowledge discovery in complex, multi-dimensional data spaces
- **Software Architectures:** Parallel and high performance algorithms

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 5, 5/14/2007

PARADIGM: SEMANTIC NETWORKS

• Lattice-

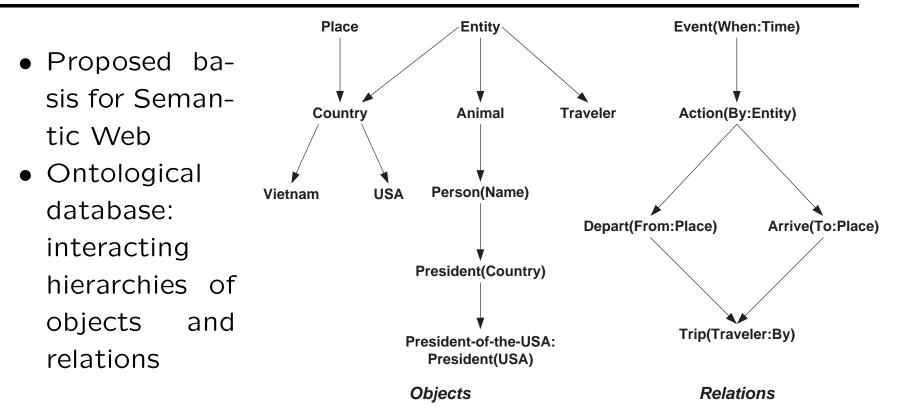

labeled directed multi-graphs

 Increasing size and prominence for

databases:

Intelligence analysis, law enforcement, computa-

tional biology


• **Challenges:** Typed-link network theory; morphisms of typed graphs; ontology analysis, induction, and interoperability.

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 6, 5/14/2007

REASONING WITHIN ONTOLOGIES FOR THE SEMANTIC WEB

- Semantic relations valued on objects
- Description-logic queries

Who was the last president before Clinton to visit Vietnam?

>>: (Name(By)) (Trip?x (To:Vietman, By:President-of-the-USA) .and. lub(When(x)) \leq 1992)

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 7, 5/14/2007

BIO-ONTOLOGIES

- Domain-specific concepts, together with *how they're related semantically*
- Crushing need driven by the genomic revolution
- <u>At least:</u>
 - Large terminological collections (controlled vocabularies, lexicons)
 - Organized in taxonomic, hierarchical relationships
- <u>Sometimes in addition</u>: Methods for inference over these structures
- Molecular, anatomy, clinical, epidemiological, etc.:

Gene Ontology: Molecular function, biological process, cellular location

Fundamental Model of Anatomy

Unified Medical Language System: National Library of Medicine, meta-thesaurus

Open Biology Ontologies

MEdical Subject Headings (MeSH)

Enzyme Structures Database: EC numbers

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 8, 5/14/2007

GENE ONTOLOGY (GO): DNA METABOLISM PORTION

а

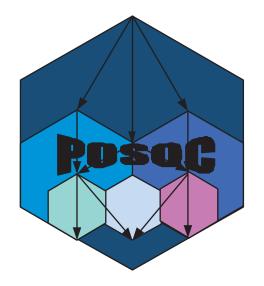
- Taxonomic controlled vocabulary
- $\sim 20K$ nodes populated by genes, proteins
- Two orders
 - \leq_{isa}, \leq_{has}
- Major community effort: assuming primary position in general bioinformatics

DNA degradation- DNA recombination CDC9 mei-9 Lig1 **DNA** packaging ► DNA repair **DNA** replication **REV3** Radt Lig1 RNH35 RatL Recc1 mei-9 Lig3 RNR1 RmS Rem1 mus209 mitochondrial Rrm2 hay Rad51 genome maintenance DNA-dependent DNA replication mitochondrial DNA-dependent - DNA ligation **DNA** replication CDC9 DNA-Hg I Lig1 DNA-Hg II Lig3 pre-replicative complex formation and maintenance **DNA strand elongation** MCM2 Mcm2 Mcmd2 Pena DNA pol-a 180 MCM3 Mcm3 Mcmd DNA Recc1 CDC54/MCM4 Mcm4 Mcmd4 unwinding CDC46/MCM5 Mem5 MCM lagging strand MCM6 Mcm6 Mcmd6 мсмз eloneation DNA DNA CDC47/MCM7 Mcm7 CDC54/MCM4 CDC2 initiation CDC46/MCM5 priming Orc2 DPB11 POL₂ MCM6 leading strand MCM2 CDC47/MCM7 CDC9 elongation мсмз **SACCHAROMYCES** CDC2 CDC54/MCM4 Mcmd4 DROSOPHILA DNA pol-8 DPB11 CDC46/MCM5 Memd5 POL2 MUS MCM6 CDC47/MCM7

DNA metabolism

Gene Ontology Consortium (2000): "Gene Ontology: Tool For the Unification of Biology", *Nature Genetics*, 25:25-29

• Tremendous computational resource: large, semantically rich, validated, middle ontology, first (?) in major use

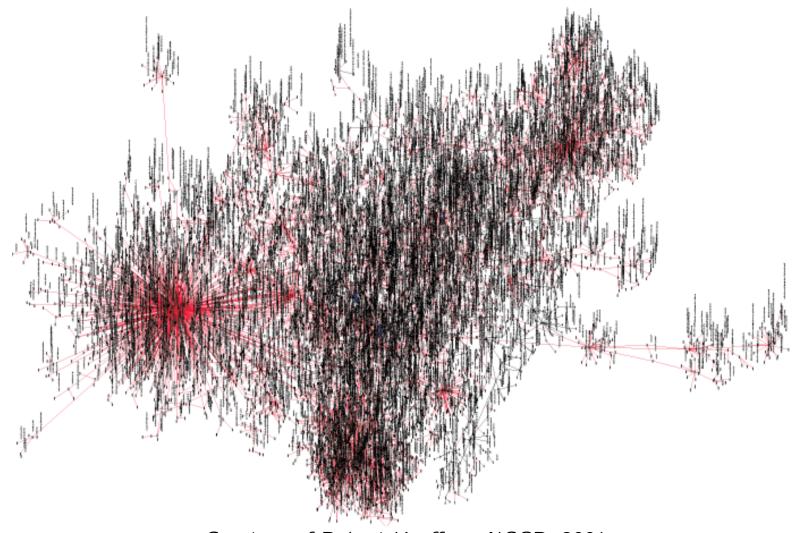


Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 9, 5/14/2007

CATEGORIZATION IN THE GENE ONTOLOLGY

http://www.c3.lanl.gov/posoc

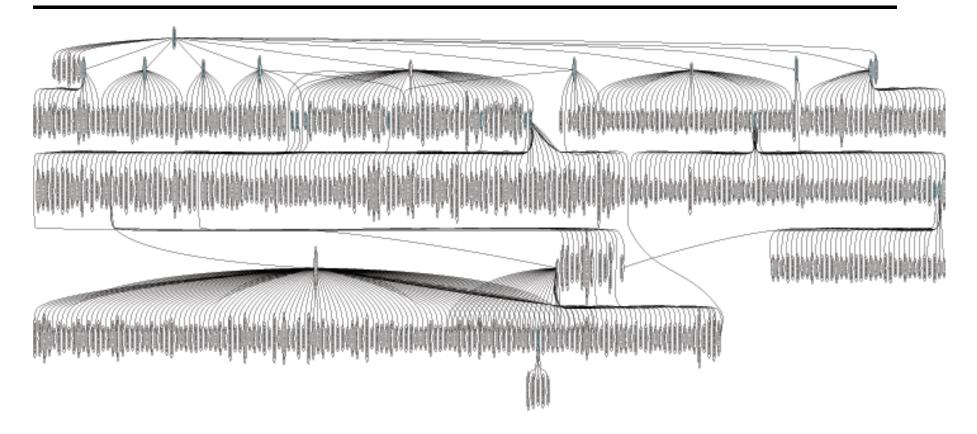
- Develop functional hypotheses about hundreds of genes identified through expression experiments
- Given the Gene Ontology (GO) ...
- And a list of hundreds of genes of interest ...
- "Splatter" them over the GO ...
- Where do they end up?
 - Concentrated?
 - Dispersed
 - Clustered?
 - High or low?
 - Overlapping or distinct?
- POSet Ontology Categorize (POSOC)



C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) "The Gene Ontology Categorizer", Bioinformatics, v. ${\bf 20}:$ s1, pp. 169-177

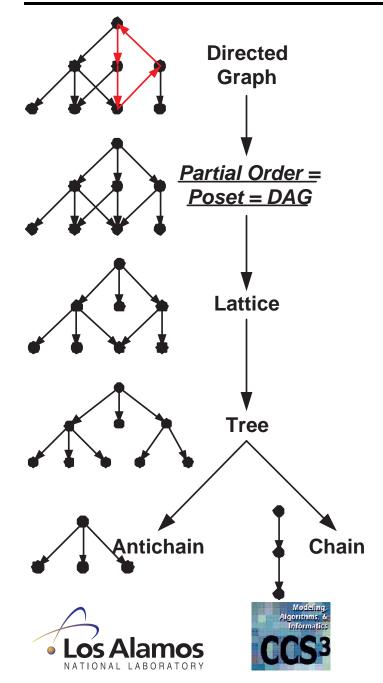
Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 10, 5/14/2007

WHOLE GO CA. 2001



Courtesy of Robert Kueffner, NCGR, 2001

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 11, 5/14/2007


GO PORTION, HIERARCHICAL EYECHART

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 12, 5/14/2007

HIERARCHIES AS PARTIALLY ORDERED SETS

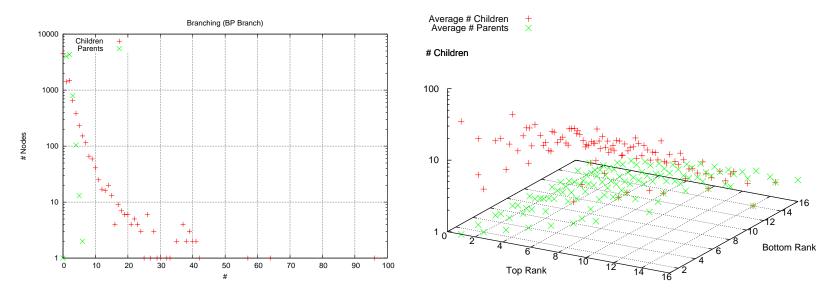
- Partial Order: Set P; relation ≤ ⊆ P²: reflexive, anti-symmetric, transitive
- Poset: $\mathcal{P} = \langle P, \leq \rangle$
- Simplest mathematical structures which admit to descriptions in terms of "levels" and "hierarchies"
- More specific than graphs or networks: no cycles, equivalent to Directed Acyclic Graphs (DAGs)
- More general than trees, lattices: single nodes, pairs of nodes can have multiple parents
- Ubiquitous in knowledge systems: constructed, induced, empirical

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 13, 5/14/2007

BASIC POSET CONCEPTS

Poset: $\mathcal{P} = \langle P, \leq \rangle$ **Comparable Nodes:** $a \sim b := a \leq b$ or $b \leq a$ **Up-Set:** $\uparrow a = \{b \ge a\}$, **Down-Set:** $\downarrow a = \{b \le a\}$ **Chain:** Collection of comparable nodes: $a_1 \leq a_2 \leq \ldots \leq a_n$ **Height:** Size maximal chain $\mathcal{H}(\mathcal{P})$ Noncomparable Nodes: $a \not\sim b$ Antichain: Collection of noncompara-Κ С ble nodes: $A \subseteq P, a \not\sim b, a, b \in A$ Width: Size maximal antichain $\mathcal{W}(\mathcal{P})$ **Interval:** $[a, b] := \{c \in P : a \le c \le b\}$, a \vec{F} G bounded sub-poset of \mathcal{P} Join, Meet: $a \lor b, a \land b \subseteq P$ **Lattice:** Then $a \lor b, a \land b \in P$ **Bounded:** Min $0 \in P$, Max $1 \in P$

Schröder, BS (2003): Ordered Sets, Birkhäuser, Boston



Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 14, 5/14/2007

SOME GO QUANTITATIVE MEASURES

		Nodes	Leaves	Interior	Edges	${\cal H}$	${\cal W}$
•	MF			1.3K	8.1K	13	\geq 3.5K
	BP	7.7K	4.1K	3.6K	11.8K	15	\geq 2.9K
	CC	1.3K	0.9K	0.4K	1.7K	13	\geq 0.4K
-	GO	16.0K	10.6K	5.4K	21.5K	16	\geq 5.9K

Branching by Interval Rank (BP Branch)

Joslyn, Cliff; Mniszewski, SM; Verspoor, KM; and JD Cohn: (2005) "Improved Order Theoretical Techniques for GO Functional Annotation", poster at 2005 Conf. on Intelligent Systems for Molecular Biology (ISMB 05)

C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) "The Gene Ontology Categorizer", *Bioinformatics*, v. **20**:s1, pp. 169-177

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 15, 5/14/2007

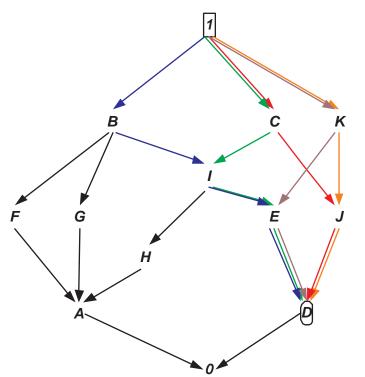
CHAIN DECOMPOSITION OF INTERVALS

Comparable Nodes: e.g. $D \le 1 \in P$

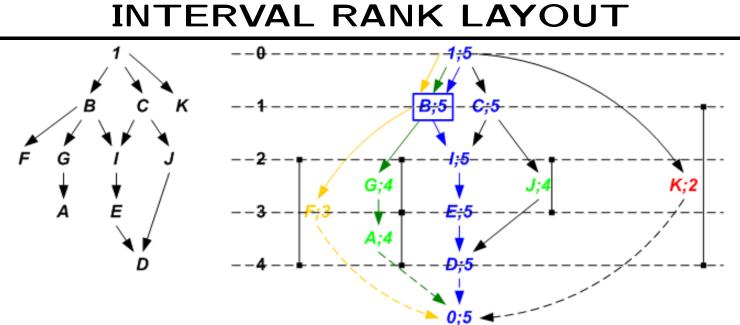
Chain Decomposition: Set of all chains connecting them:

$$C(D, 1) = \{C_j\}$$

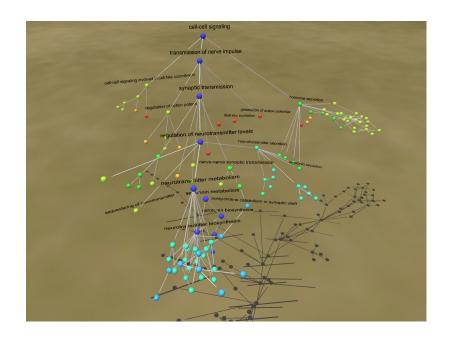
= $\{D \prec E \prec I \prec B \prec 1, D \prec E \prec I \prec C \prec 1, D \prec E \prec K \prec 1, D \prec J \prec C \prec 1, D \prec J \prec C \prec 1, D \prec J \prec K \prec 1\} \subseteq 2^P$


Chain Lengths: $h_j := |C_j| - 1$ Vectors of Chain Lengths: $\vec{i} (-1) \cdot (-1)^M$

$$\begin{array}{c} h(a,b) := \left\langle h_j \right\rangle_{j=1} \\ \left\langle 4,4,3,3,3 \right\rangle \end{array}$$

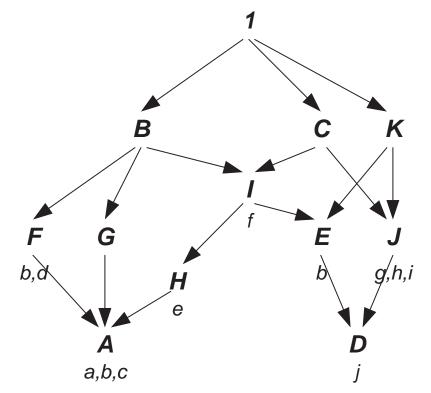

Extremes:

$$h_*(a,b) = \min_{\substack{h_j \in \vec{h}(a,b)\\h_j \in \vec{h}(a,b)}} h_j = 3$$
$$h^*(a,b) = \max_{\substack{h_j \in \vec{h}(a,b)\\h_j \in \vec{h}(a,b)}} h = 4$$


Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 16, 5/14/2007

- Interval valued vertical position (rank)
- Chain decomposition guides horizontal: short maximal chains to outside

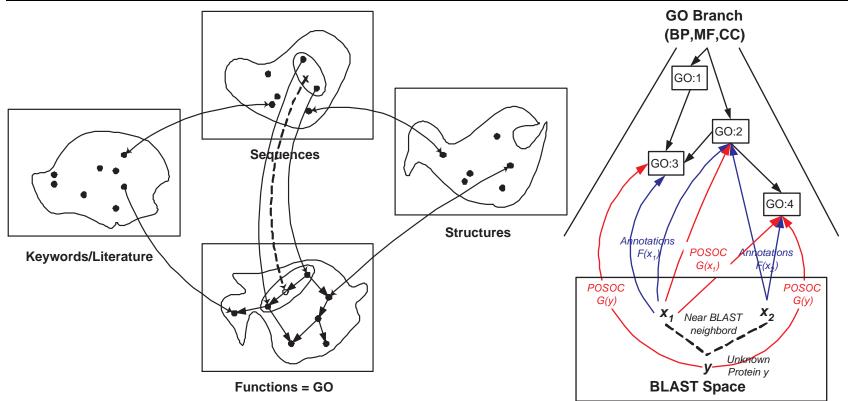
CA Joslyn, SM Mniszewski, SA Smith, and PM Weber: (2006) "SpindleViz: A Three Dimensional, Order Theoretical Visualization Environment for the Gene Ontology", Joint BioLINK and 9th Bio-Ontologies Meeting (JBB 06)



Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 17, 5/14/2007

CATEGORIZATION METHOD

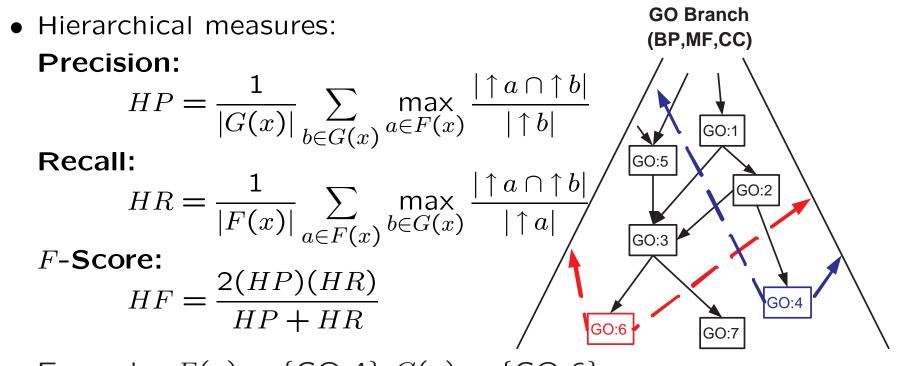
- **POSO:** POSet Ontology $\mathcal{O} := \langle \mathcal{P}, X, F \rangle, \mathcal{P} = \langle P, \leq \rangle$ **Labels:** finite, non-empty set X**Labeling Function:** $F: X \mapsto 2^P$
- Given labels (genes) $c, e, i \ldots$
- What node(s)
 P = {A, B, C, ..., K} are best to pay attention to?


- Scores to rank-order nodes wrt/gene locations, balancing:
 - Coverage: Covering as many genes as possible
 - **Specificity:** But at the "lowest level" possible
- "Cluster" based on non-comparable high score nodes

C Joslyn, S Mniszewski, A Fulmer, and G Heaton: (2004) "The Gene Ontology Categorizer", *Bioinformatics*, v. **20**:s1, pp. 169-177

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 18, 5/14/2007

AUTOMATED ONTOLOGICAL PROTEIN FUNCTION ANNOTATION


- Mappings among regions of biological spaces . . .
- ... into spaces of biological functions
- POSOC annotated BLAST neighborhoods of new proteins
- How to measure quality of inferred annotations?

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) "Categorization Approach to Automated Ontological Function Annotation", *Protein Science*, v. **15**, pp. 1544-1549

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 19, 5/14/2007

HIERARCHICAL EVALUATION METRICS

- Example: $F(x) = \{GO:4\}, G(x) = \{GO:6\}$
 - $\uparrow a = \{GO:1, GO:2, GO:4\}, \uparrow b = \{GO:1, GO:2, GO:3, GO:5, GO:6\}$ HP = 2/5, HR = 3/5

S Kiritchenko, S Matwin, and AF Famili: (2005) "Functional Annotation of Genes Using Hierarchical Text Categorization", *Proc. BioLINK SIG on Text Data Mining*

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) "Categorization Approach to Automated Ontological Function Annotation", *Protein Science*, v. **15**, pp. 1544-1549

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 20, 5/14/2007

SEMANTIC SIMILARITIES

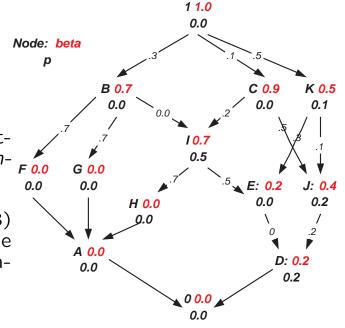
Poset $\mathcal{P} = \langle P, \leq \rangle$, probability distribution $p: P \mapsto [0, 1], \sum_{a \in P} p(a) = 1$, "cumulative" $\beta(a) := \sum_{b \leq a} p(a)$ **Resnik:** $\delta(a, b) = \max_{c \in a \lor b} [-\log_2(\beta(c))]$ **Lin:**

$$\delta(a,b) = \frac{2\max_{c \in a \lor b} [\log_2(\beta(c))]}{\log_2(\beta(a)) + \log_2(\beta(b))}$$

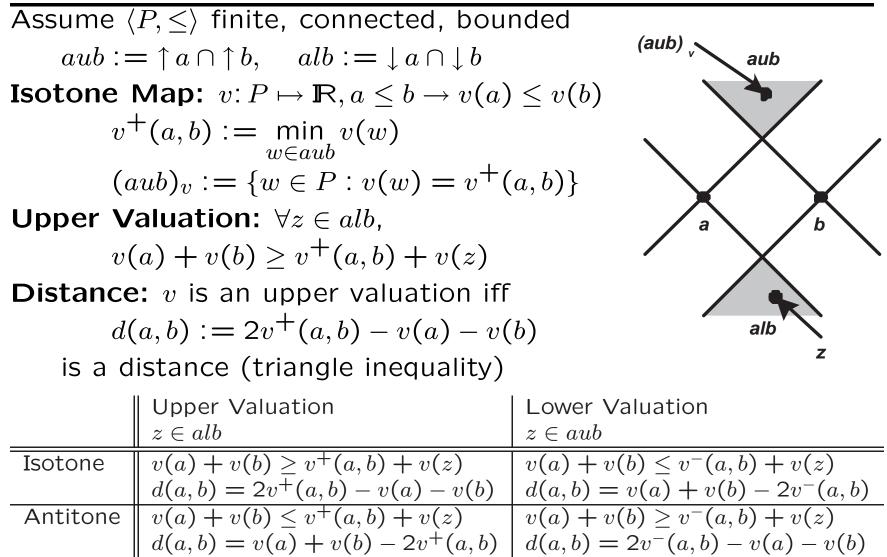
Jiang and Conrath:

 $\delta(a,b) = 2 \max_{c \in a \lor b} \left[\log_2(\beta(c)) \right] - \log_2(\beta(a)) - \log_2(\beta(b))$

Issues:


- General mathematical grounding in poset metrics
- Not *rely* on probabilistic weighting

A Budanitsky and G Hirst: (2006) "Evaluating WordNetbased measures of semantic distance." *Computational Linguistics*, 32(1), 13–47.


Lord, PW; Stevens, Robert; Brass, A; and Goble, C: (2003) "Investigating Semantic Similarity Measures Across the Gene Ontology: the Relationship Between Sequence and Annotation", *Bioinformatics*, v. **10**, pp. 1275-1283

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 21, 5/14/2007

POSET METRICS

Monjardet, B: (1981) "Metrics on Partially Ordered Sets - A Survey", *Discrete Mathematics*, v. **35**, pp. 173-184

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 22, 5/14/2007

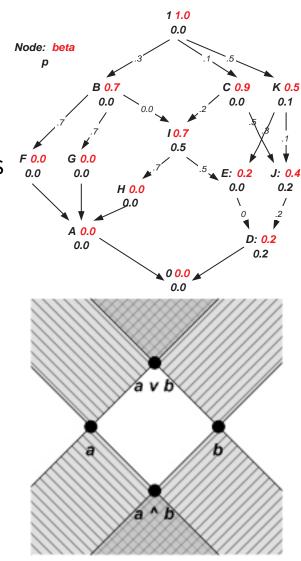
Information Theoretical: Monotone

upper valuation

- Let $v(a) = \beta(a)$, "cumulative" probability
- **Proposition:** Jiang and Conrath is a metric, others are not

•
$$d(a,b) = 2\beta(a \lor b) - \beta(a) - \beta(b)$$

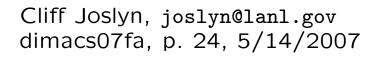
• d(I, J) = 1.53, d(E, J) = 1.64

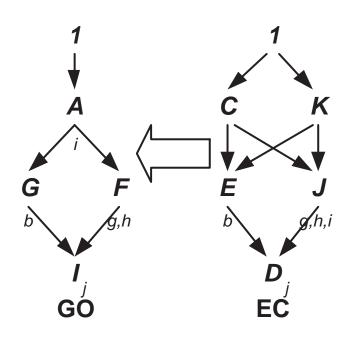

Purely Structural: Antitone upper

valuation

- $|\uparrow a \cap \uparrow b| = |\uparrow (a \lor b)|,$ $|\downarrow a \cap \downarrow b| = |\uparrow (a \land b)|$
- Let $v(a) = |\uparrow a|$
- $d(a,b) = |\uparrow a| + |\uparrow b| 2|\uparrow a \cap \uparrow b|$
- d(I, J) = 4, d(E, J) = 6

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 23, 5/14/2007


INTEROPERABILITY AND ALIGNMENT


Matching: Measure similarity between two regions of a single ontology
Comparing: Twist one ontology on a given term set into another ordering
Merging: Given two completely distinct ontologies:

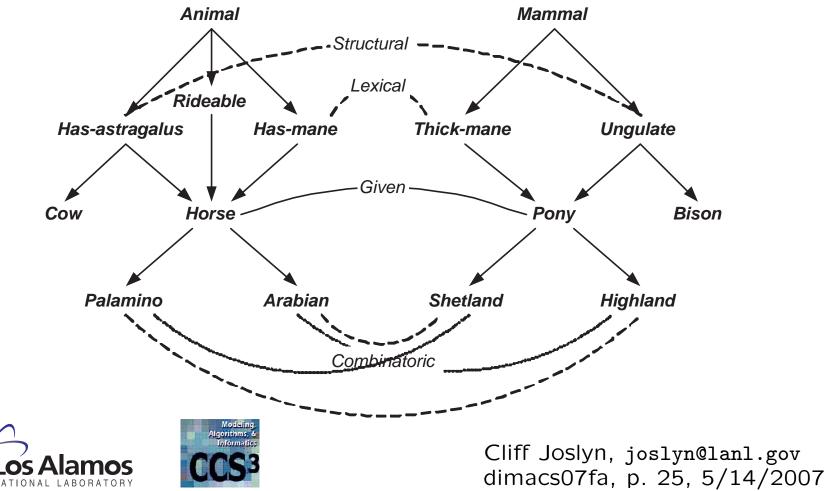
- Identify structurally similar regions: intersection
- Create encompassing meta-ontologies: product or union?

Joslyn, Cliff: (2004) "Poset Ontologies and Concept Lattices as Semantic Hierarchies", in: *Conceptual Structures at Work, Lecture Notes in Artificial Intelligence*, v. **3127**, ed. Wolff, Pfeiffer and Delugach, pp. 287-302, Springer-Verlag, Berlin

ALIGNMENT METHODS

Ultimate Goal: Construct order morhpisms

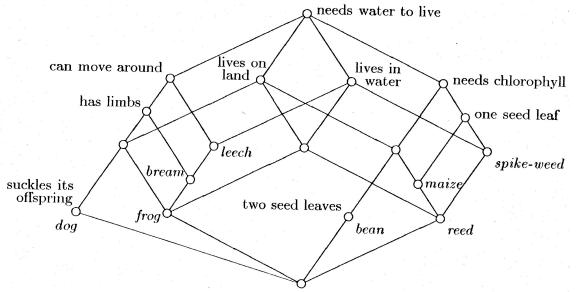
Neighborhoods: Around given anchors


Lexical: Matches

Structural: Nodes playing similar structural roles

Combinatoric: Sets of nodes playing similar structural roles

Poset Metrics: Measure candidate alignment, suggest new an-

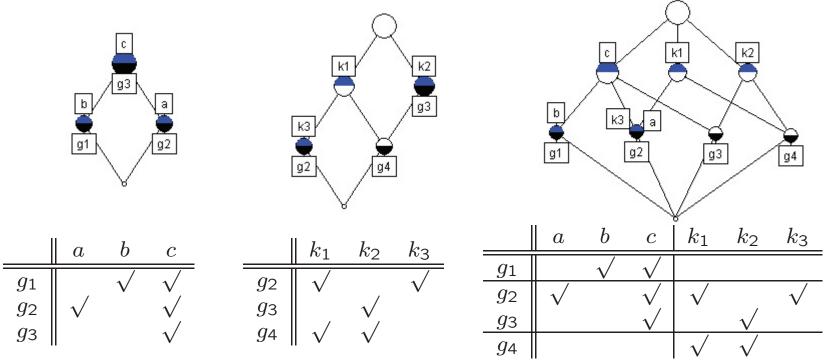


FORMAL CONCEPT ANALYSIS

- Semantic hierarchies from relational data
- Unbiased, graphical, visual representation
- Hypothesis and rule generation and evaluation
- For ontology induction, interoperability

		a	b	с	d	e	f	g	h	i
1	Leech	×	×					×		
2	Bream	×	×					×	×	
3	Frog	×	×	×				×	×	
4	Dog	×		×				×	×	×
5	Spike – weed	×	×		×		×			
6	Reed	×	×	×	×		×			
7	Bean	×		×	×	×				
8	Maize	×		×	×		×			

Figure 1.1 Context of an educational film "Living Beings and Water". The attributes are: a: needs water to live, b: lives in water, c: lives on land, d: needs chlorophyll to produce food, e: two seed leaves, f: one seed leaf, g: can move around, h: has limbs, i: suckles its offspring.


Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept Analysis, Springer-Verlag

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 26, 5/14/2007

FCA ONTOLOGY MERGER, INDUCTION

- $\{g_1, g_2, g_3\}$: annotated into an ontology O:
- $\{g_2, g_3, g_4\}$: annotated to keywords $K = \{k_1, k_2, k_3\}$
- Induce order on K while incoporating order on O
- Amenable to metric treatment of attributes, objects

Gessler, DDG, CA Joslyn, KM Verspoor: (2007) "Knowledge Integration in Open Worlds: Exploiting the Mathematics of Hierarchical Structure", in preparation for ICSC 07

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 27, 5/14/2007

В

 \mathbf{g}_2

g₁

ACKNOWLEDGEMENTS, COLLABORATIONS, AND OTHER ASSORTED NAME-DROPPING

LANL Info. Sciences:

- Susan Mniszewski
- Chris Orum
- Karin Verspoor
- Michael Wall

LANL Elsewhere:

- Judith Cohn
- Bill Bruno
- Steve Smith

U. West Indies:

• Jonathan Farley

PNNL: Joe Oliveira

- U. Newcastle: Phillip Lord
- NCGR: Damian Gessler

Technische Universität Dresden:

- Stephan Schmidt
- Tim Kaiser
- Bjoern Koester

New Mexico State U.:

• Alex Pogel

P&G: Andy Fulmer

Stanford Medical Informatics:

• Natasha Noy

Cliff Joslyn, joslyn@lanl.gov dimacs07fa, p. 28, 5/14/2007