
The interplay of analysis 
and algorithms

(or, Computational Harmonic Analysis)

Anna Gilbert
University of Michigan

supported by DARPA-ONR, NSF, and Sloan Foundation



Two themes



Sparse representation
Represent or approximate signal, function 
by a linear combination of a few atomic 
elements



Compressed Sensing 

Noisy, sparse signals can be approximately 
reconstructed from a small number of 
linear measurements



Recovery = find significant entries

Sparse representation = signal recovery

different input models



How to compute?

Analysis and algorithms 
are both key components



SPARSE

Signal space:  dimension

Dictionary: finite collection of unit norm atoms

Representation: linear combination of atoms 

Find best      -term representation 

d

D = {φω : ω ∈ Ω}, |Ω| = N > d

s =

∑

λ∈Λ

cλφλ

m



Applications

Approximation theory

Signal/Image compression

Scientific computing, numerics

Data mining, massive data sets

Generalized decoding

Modern, hyperspectral imaging systems

Medical imaging



SPARSE is NP-HARD

SPARSE is NP-COMPLETE



If dictionary is ONB, then SPARSE 
is easy (in polynomial time)



Incoherent dictionaries
(a basic result)

 -coherent dictionary,     = smallest angle 
between vectors

  = number of terms in sparse representation

Algorithm returns    -term approx. with error

Two-phase greedy pursuit
Joint work with Tropp, Muthukrishnan, and Strauss
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Future for sparse approximation

Hardness of approximation is related to hardness of SET 
COVER

Approximability of SET COVER well-studied (Feige, etc.)

Need insight from previous work in TCS

Geometry is critical in sparse approximation

Need a way to describe better geometry of dictionary 
and its relation to sparse approximation: VC dimension?

Methods for constructing “good” redundant dictionaries 
(data dependent?)

Watch the practitioners!



Exponential 
time 

Polynomial 
time 

Linear 
time 

Logarithmic 
time 

General 
SPARSE

SPARSE, 
geometry Matrix 

multiplication

FFT

AAFFTChaining, HHS 
Pursuit

Streaming 
wavelets, etc.

O(d)

O(log d)

O(d2)

O(2d)



Computational 
Resources

Time

Space

Randomness

Communication



Models: Sampling

= m-sparse signal,
length d

measurements:
length N = m log d



Models: linear 
measurements

= m-sparse signal,
length d

measurements:
length N = m log d



Models: Dictionary
Orthonormal bases

Fourier

Wavelets

Spikes

Redundant dictionaries

Piecewise constants

Wavelet packets

Chirps



Results: Fourier

Theorem: On signal    with length    , AAFFT 
builds     -term Fourier representation      in 
time                         using                         
samples with error 

On each signal, succeed with high probability. 

m r

mpoly(log d/ε) mpoly(log d/ε)

‖s − r‖2 ≤ (1 + ε)‖s − sm‖2

s d

G., Muthukrishnan, and Strauss 2005



Why sublinear resources?



Sparsogram
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Generalize Fourier sampling algorithm to 
sublinear algorithm for linear chirps

Multi-user detection for wireless comm.

Radar detection and identification

Extensions, applications

Calderbank, G., and Strauss 2006
Lepak, Strauss, and G.



Results: Wavelets

Theorem: On signal    with length    ,  streaming 
algorithm builds     -term wavelet representation      
in time                          using                         
linear measurements with error 

On each signal, succeed with high probability. 

m r

‖s − r‖2 ≤ (1 + ε)‖s − sm‖2

s d

poly(m log d/ε)poly(m log d/ε)

G., Guha, Indyk, Kotidis, Muthukrishnan, and Strauss 2001



Results: Chaining

• Theorem: With probability at least               , the random 
measurement matrix      has the following property.  
Suppose that    is a d-dimensional signal whose best m-term 
approximation with respect to     norm is      .  Given the            
sketch               of size                    and the number m,  the 
Chaining Pursuit algorithm produces a signal      with at 
most O(m) nonzero entries.  This signal estimate satisfies

The time cost of the algorithm is 

v = Φs

1 − d
−3

Φ

s

!1 sm

O(m log2
d)

‖s − ŝ‖1 ≤ C log m‖s − sm‖1

ŝ

O(m log2(m) log2(d))

G., Strauss, Tropp, and Vershynin 2006



Algorithmic linear 
dimension reduction in 

Theorem: Let     be a set of points in      
endowed with the    norm.  Assume that each 
point has at most       non-zero coordinates.  These 
points can be linearly embedded in    with 
distortion                            , using only        
dimensions.  Moreover, we can reconstruct a point 
from its low-dimensional sketch in time

G., Strauss, Tropp, and Vershynin 2006

!1

!1

O(m log2
d)O(log3(m) log2(d))

O(m log2(m) log2(d))

m

!1

Y R
d



Results: HHS

• Theorem: With probability at least               , the random 
measurement matrix     has the following property.  Suppose 
that    is a d-dimensional signal whose m largest entries are 
given by      .  Given the sketch                 of size                         

and the number m,  the HHS Pursuit algorithm produces a 
signal       with  m  nonzero entries.  This signal estimate 
satisfies

The time cost of the algorithm is 

‖s − ŝ‖2 ≤ ‖s − sm‖2 +
ε√
m

‖s − sm‖1

G., Strauss, Tropp, and Vershynin 2007

v = Φs

1 − d
−3

Φ

s

sm

ŝ

mpolylog(d)/ε2

m2polylog(d)/ε4



Desiderata

Uniformity: Sketch works for all signals 
simultaneously

Optimal Size:                     measurements                    

Optimal Speed: Update and output times 
are

Must have high quality: answer to query has 
near-optimal error

mpolylog(d)

mpolylog(d)



less information           measure less           compute less



Related Work

Remark: Numerous contributions in area are not 
strictly comparable

Gilbert et al. 2001, 2005: Cormode-Muthukrishnan 2005;

Candes-(Romberg)-Tao 2004, 2005; Donoho 2004, 2005....

Related Work

Reference Uniform Opt. Storage Sublin. Query

GMS X ! !
CM ! X !
CRT, Don ! ! X

Chaining ! ! !
HHS ! ! !

Remark: The numerous contributions in this area are not strictly

comparable.

References: Gilbert et al. 2002, 2005; Cormode–Muthukrishnan 2005;

Candès–Romberg–Tao 2004, Donoho 2004, . . .

One Sketch for All (MMDS 2006) 13



More formally....



Signal Information Recovery

 Golomb-Weinberger 1959

signal space statistic space

information space

statistic map

information map
(measurements)

recovery
algorithm

Φ

U

A

Ω UΩ

ΦΩ



More Formal Framework...

What signal class are we interested in?

What statistic are we trying to compute?

How much nonadaptive information is necessary to do so?

What type of information?  Point samples?  Inner products?

Deterministic or random information?

How much storage does the measurement operator 
require?

How much computation time, space does the algorithm use?

How much communication is necessary?



Computational Harmonic Analysis?

Algorithmic Harmonic Analysis = AHA!



http://www.math.lsa.umich.edu/~annacg

annacg@umich.edu

http://www.math.lsa.umich.edu/~annacg
http://www.math.lsa.umich.edu/~annacg
mailto:annacg@umich.edu
mailto:annacg@umich.edu


Isolation = Approximate 
Group Testing



Want to find      spikes at height        ,

Assign     positions into                    groups by 

           of      spikes isolated

           groups have 

                      groups have single spike and low noise 
except with probability 

Union bound over all spike configurations

Approximate group testing
1/mm

d

‖noise‖1 = 1

n = m log d Φ

≥ c1m

≤ c2m noise ≥ 1/(2m)

≥ (c1 − c2)m
e
(−m log d)

m


