The interplay of analysis and algorithms (or, Computational Harmonic Analysis)

Anna Gilbert
University of Michigan

Two themes

Sparse representation

Represent or approximate signal, function by a linear combination of a few atomic elements

Compressed Sensing

Noisy, sparse signals can be approximately reconstructed from a small number of linear measurements

Recovery $=$ find significant entries

Sparse representation = signal recovery

different input models

How to compute?

Analysis and algorithms
are both key components

SPARSE

Signal space: dimension d
Dictionary: finite collection of unit norm atoms

$$
\mathcal{D}=\left\{\phi_{\omega}: \omega \in \Omega\right\}, \quad|\Omega|=N>d
$$

Representation: linear combination of atoms

$$
s=\sum_{\lambda \in \Lambda} c_{\lambda} \phi_{\lambda}
$$

Find best m-term representation

Applications

Approximation theory
Signal/Image compression
Scientific computing, numerics
Data mining, massive data sets
Generalized decoding
Modern, hyperspectral imaging systems
Medical imaging

SPARSE is NP-HARD SPARSE is NP-COMPLETE

If dictionary is ONB, then SPARSE is easy (in polynomial time)

Incoherent dictionaries (a basic result)

μ-coherent dictionary, $\mu=$ smallest angle between vectors
$m=$ number of terms in sparse representation

$$
m<\frac{1}{2 \mu}
$$

Algorithm returns m-term approx. with error

$$
\left\|x-a_{m}\right\| \leq \sqrt{1+\frac{2 \mu m^{2}}{(1-2 \mu m)^{2}}}\left\|x-a_{\mathrm{OPT}}\right\|
$$

Two-phase greedy pursuit

Future for sparse approximation

Hardness of approximation is related to hardness of SET COVER

Approximability of SET COVER well-studied (Feige, etc.)
Need insight from previous work in TCS
Geometry is critical in sparse approximation
Need a way to describe better geometry of dictionary and its relation to sparse approximation:VC dimension?

Methods for constructing "good" redundant dictionaries (data dependent?)

Watch the practitioners!

Computational Resources

Time
Space
Randomness
Communication

Models: Sampling

Models: linear

measurements

measurements: length $N=m \log d$

m-sparse signal, length d

Models: Dictionary

Orthonormal bases
Fourier
Wavelets
Spikes
Redundant dictionaries
Piecewise constants
Wavelet packets
Chirps

Results: Fourier

Theorem: On signal s with length d,AAFFT builds m-term Fourier representation r in time m poly $(\log d / \epsilon)$ using m poly $(\log d / \epsilon)$ samples with error

$$
\|s-r\|_{2} \leq(1+\epsilon)\left\|s-s_{m}\right\|_{2}
$$

On each signal, succeed with high probability.

Why sublinear resources?

60 Frequency Exact Superposition DFT Run Time

Sparsogram

Extensions, applications

Generalize Fourier sampling algorithm to sublinear algorithm for linear chirps

Multi-user detection for wireless comm.

Radar detection and identification

Calderbank, G., and Strauss 2006
Lepak, Strauss, and G.

Results:Wavelets

Theorem: On signal s with length d, streaming algorithm builds m-term wavelet representation in time $\operatorname{poly}(m \log d / \epsilon)$ using $\operatorname{poly}(m \log d / \epsilon)$ linear measurements with error

$$
\|s-r\|_{2} \leq(1+\epsilon)\left\|s-s_{m}\right\|_{2}
$$

On each signal, succeed with high probability.

Results: Chaining

Theorem: With probability at least $1-d^{-3}$, the random measurement matrix Φ has the following property. Suppose that s is a d-dimensional signal whose best m-term approximation with respect to ℓ_{1} norm is s_{m}. Given the sketch $v=\Phi s$ of size $O\left(m \log ^{2} d\right)$ and the number m, the Chaining Pursuit algorithm produces a signal \widehat{s} with at most $O(m)$ nonzero entries. This signal estimate satisfies

$$
\|s-\widehat{s}\|_{1} \leq C \log m\left\|s-s_{m}\right\|_{1}
$$

The time cost of the algorithm is $O\left(m \log ^{2}(m) \log ^{2}(d)\right)$
G., Strauss, Tropp, and Vershynin 2006

Algorithmic linear dimension reduction in ℓ_{1}

Theorem: Let Y be a set of points in \mathbf{R}^{d} endowed with the ℓ_{1} norm. Assume that each point has at most m non-zero coordinates. These points can be linearly embedded in ℓ_{1} with distortion $O\left(\log ^{3}(m) \log ^{2}(d)\right)$, using only $O\left(m \log ^{2} d\right)$ dimensions. Moreover, we can reconstruct a point from its low-dimensional sketch in time

$$
O\left(m \log ^{2}(m) \log ^{2}(d)\right)
$$

Results: HHS

Theorem: With probability at least $1-d^{-3}$, the random measurement matrix Φ has the following property. Suppose that s is a d-dimensional signal whose m largest entries are given by s_{m}. Given the sketch $v=\Phi s$ of size

$$
m \text { polylog }(d) / \epsilon^{2}
$$

and the number m, the HHS Pursuit algorithm produces a signal \widehat{s} with m nonzero entries. This signal estimate satisfies

$$
\|s-\widehat{s}\|_{2} \leq\left\|s-s_{m}\right\|_{2}+\frac{\epsilon}{\sqrt{m}}\left\|s-s_{m}\right\|_{1}
$$

The time cost of the algorithm is $m^{2} \operatorname{poly} \log (d) / \epsilon^{4}$

Desiderata

Uniformity: Sketch works for all signals simultaneously

Optimal Size: mpolylog (d) measurements
Optimal Speed: Update and output times are m polylog (d)

Must have high quality: answer to query has near-optimal error

less information \longrightarrow measure less \longrightarrow compute less

Related Work

Reference	Uniform	Opt. Storage	Sublin. Query
GMS	X	\checkmark	\checkmark
CM	\checkmark	X	\checkmark
CRT, Don	\checkmark	\checkmark	X
Chaining	\checkmark	\checkmark	\checkmark
HHS	\checkmark	\checkmark	\checkmark

Remark: Numerous contributions in area are not strictly comparable

Gilbert et al. 200I, 2005: Cormode-Muthukrishnan 2005;
Candes-(Romberg)-Tao 2004, 2005; Donoho 2004, 2005....

More formally....

Signal Information Recovery

Golomb-Weinberger 1959

More Formal Framework...

What signal class are we interested in?
What statistic are we trying to compute?
How much nonadaptive information is necessary to do so?
What type of information? Point samples? Inner products?
Deterministic or random information?
How much storage does the measurement operator require?

How much computation time, space does the algorithm use?
How much communication is necessary?

Computational Harmonic Analysis?
Algorithmic Harmonic Analysis = AHA!
http: / /www.math.lsa.umich.edu/~annacg

annacg@umich.edu

Isolation = Approximate Group Testing

Approximate group testing

Want to find m spikes at height $1 / m, \|$ noise $\|_{1}=1$
Assign d positions into $n=m \log d$ groups by Φ
$\geq c_{1} m$ of m spikes isolated
$\leq c_{2} m$ groups have noise $\geq 1 /(2 m)$
$\geq\left(c_{1}-c_{2}\right) m$ groups have single spike and low noise except with probability $\mathrm{e}^{(-m \log d)}$

Union bound over all spike configurations

