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Compressed Sensing In the News
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Compressed Sensing on the Web

www.dsp.ece.rice.edu/CS/

lists over 60 papers 

on “Compressed 

Sensing”…
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So… what is Compressed Sensing?

� Will introduce the CS problem and initial results

� Outline the (pre)history of Compressed Sensing

� Algorithmic/Combinatorial perspectives and new results

� Whither Compressed Sensing? 
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Signal Processing Background

� Digital Signal Processing / Capture:

Digitize signal: 
capture n
samples

Losslessly
transform into 
appropriate basis 
(eg FFT, DCT)

Pick k � n

coefficients to 
represent signal 

Quantize coefficients, 
encode and store
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DSP Simplified

� Observation: we make n measurements, but only end up 
storing k pieces of information

� What if measurements are very costly, 

– E.g. each one requires a separate hardware sensor

– E.g. Medical imaging, patient is moved through scanner

� (Also, why do whole transform?, sometimes expensive)

Discrete signal A
of dimension n

Select k � n coefficients 

to represent signal



7

The Compressed Sensing Credo

� Only measure (approximately) as much as is stored

� Measurement cost model: 

– Each measurement is a vector ψi of dimension n

– Given ψi and signal (vector) A, measurement = ψi · A = yi

– Only access to signal is by measuring

– Cost is number of measurements

� Trivial solution: ψi = 1 at location i, 0 elsewhere

– Gives exact recovery but needs n measurements

Ψ A
Α

=

Ψ’

A y=
Complete 
sensing

Compressed 
Sensing
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Error Metric

� Let Rk be a representation of A with k coefficients

� Define “error” of representation Rk as sum squared 
difference between Rk and A: ‖‖‖‖Rk - A‖‖‖‖2

2

� Picking k largest values minimizes error

– Hence, goal is to find the “top-k”

� Denote this by Rk
opt and aim for error ‖‖‖‖Rk

opt – A‖‖‖‖2
2
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“The” Compressed Sensing Result

Recover A “well” if A is “sparse” in few measurements

– “well” and “sparse” to be defined later

Only need O(k log n/k) measurements

� Each ψi[j] is drawn randomly from iid Gaussian

� Set of solutions is all x such that ψx = y

� Output A’ = argmin ||x||1 such that ψx = y

– Can solve by linear programming
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Why does it work? 

[Donoho 04, Candes-Tao 04, Rudelson-Vershynin 04…]

� Short answer: randomly chosen values ensure a set of 

properties of measurements ψ will work

– The unexpected part: working in the L1 metric optimizes 

error under L2
2 with small support (“L0 metric”).

– ψ works for any vector A (with high probability)

– Other measurement regimes (eg Bernoulli ±1)

� Long answer: read the papers for in-depth proofs that ψ
has required properties (whp) and why they suffice

– E.g. bounds on minimal singular value of each submatrix

of ψ up to certain size



11

Sparse signals

� How to model signals well-represented by k terms? 

– k-support: signals that have k non-zero 
coefficients under Ψ. So ‖‖‖‖Rk

opt – A‖‖‖‖2
2 = 0

– p-compressible: sorted coefficients have

a power-law like decay: |θi| = Ο(i-1/p).  
So ‖‖‖‖Rk

opt–A‖‖‖‖2
2 = O(k1-2/p) = ‖‖‖‖Ck

opt‖‖‖‖2
2

– α-exponentially decaying: 

even faster decay |θi| = Ο(2-αi). 

– general: no assumptions on ‖‖‖‖Rk
opt – A‖‖‖‖2

2.

� (After an appropriate transform) many real signals 

are p-compressible or exponentially decaying.  
k-support is a simplification of this model.
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Sparse Signals

Original CS results apply principally to k-support and p-
compressible signals. 

� They guarantee exact recovery of k-support signals

� They guarantee “class-optimal” error on p-compressible

– ‖‖‖‖Rk
opt–A‖‖‖‖2

2 = O(k1-2/p) = ‖‖‖‖Ck
opt‖‖‖‖2

2

– May not relate to the best possible error for that signal

– (Algorithm does not take p as a parameter)

k-support p-compressible
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Prehistory of Compressed Sensing

Related ideas have been around for longer than 2 years…

� Main results evolved through a series of papers on “a 

generalized uncertainty theorem” (Donoho/Candes-Tao…)

� Mansour 1992: “Randomized approximation and interpolation 
of sparse polynomials” by few evaluations of polynomial. 

– Evaluating a polynomial is dual of making a measurement

– Algorithmic Idea: divide and conquer for the largest 

coefficient, remove it and recurse on new polynomial

– Can be thought of as ‘adaptive group testing’, 

but scheme is actually non-adaptive
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More Prehistory

� Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss (and 
subsets thereof) worked on various fourier and wavelet 

representation problems in data streams

� Underlying problems closely related to Compressed 

Sensing: with restricted access to data, recover k out of 

n representatives to accurately recover signal (under L2)

� Results are stronger (guarantees are instance-optimal) 

but also weaker (probabilistic guarantee per signal)

� Underlying technique is (non-adaptive) group testing.
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Group Testing

� Break items (signal values) into groups

� Measure information on groups using binary vectors

– Interpret results as positive or negative

� Recover identity of “heavy” items, and their values

� Continue (somehow) until all coefficients are found

– General benefit: decoding tends to be much faster than LP

Given 9 coins, one 

heavier than rest, 

find in 2 weighings
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Trivial Group Testing

� Suppose A is 1-support signal (i.e. zero but for one place)

� Adaptive group testing: measure first half and second half, 

recurse on whichever is non-zero

� Non-adaptive: do in one pass using Hamming matrix H

– log 2n x n matrix: log 2n measurements

– The i’th column encodes i in binary

– Measure A with H, read off location

of the non-zero position, and its value

� Hamming matrix often used in group testing for CS

– if a group has one large value and the rest “noise”, 

using H on the group recovers item

1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0
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Group Testing

From [C, Muthukrishnan 05], which specifically applies group 
testing to Compressed Sensing:

� From O(c k/ε2 log3 n) measurements, with probability at 
least 1 - n-c, and in time O(c2 k/ε2 log3 n) we find a 
representation Rk of A so ‖‖‖‖Rk – A‖‖‖‖2

2 ���� (1+ε) ‖‖‖‖Rk
opt – A‖‖‖‖2

2

(instance optimal) and R has support k.

� Randomly break into groups so not too many items fall in 

each group, encode as binary measurements using H

� Show good probability for recovering k largest values

� Repeat independently several times to improve probability
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More Group Testing Results

� [Gilbert, Strauss, Tropp, Vershynin 06] develop new 
approaches with iterative recovery from measurements

– Aiming for stronger “one set of measurements for all”

– Must restate bounds on quality of representation

– See next talk for full details!

� [Savotham, Baron, Baraniuk 06] use a more heuristic group 
testing approach, “sudocodes”

– Make groups based on random divisions, no H

– Use a greedy inference algorithm to recover

– Seems to work pretty well in practice, needs strong 

assumptions on non-adversarial signals to analyze
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Combinatorial Approaches

� A natural TCS question: if measurement sets exist which 
are good for all signals, can we construct them explicitly? 

� Randomized Gaussian approach are expensive to verify –
check complex spectral properties of all (N

k) submatrices

� Do there exist combinatorial construction algorithms that 

explicitly generate measurement matrices for CS? 

– In  n poly(log n,k) time, with efficient decoding algs.
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K-support algorithms

� Achieve O(k2 poly(log n)) measurements for k-support 
based on defining groups using residues modulo k log n

primes > k [Muthukrishnan, Gasieniec 05]

– Chinese remainder theorem ensures each non-zero value 
isolated in some group

– Decode using Hamming matrix

� Apply k-set structure [Ganguly, Majumdar 06]

– Leads to O(k2 poly(log n)) measurements

– Use matrix operations to recover

– Decoding cost somewhat high, O(k3)
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More k-support algorithms

� Using “k-strongly separating sets” (from explicit 

constructions of expanders) [C, Muthukrishnan 06]

– Similar isolation guarantees yield O(k2 log2 n)

measurements

� [Indyk’06] More directly uses expanders to get 

O(k2O(log log n)²) = O(knα) for α>0 measurements

– Bug Piotr to write up the full details…

Open question: seems closely related to coding theory on 
non-binary vectors, how can one area help the other

– Problem seems easier if restricted to non-negative signals



22

p-Compressible Signals

Explicit construction for p-compressible signals based on 

group testing [C, Muthukrishnan 06]

Approach: use two parallel rounds of group testing to find 

k’ > k large coefficients, and separate these to allow 
accurate estimation.

� Make use of K-strongly separating sets: 

– S={S1…Sm} m=O(k2log2n)
For X ⊂⊂⊂⊂ [n], |X| ���� k, ∀∀∀∀ x ∈∈∈∈ X. ∃∃∃∃ Si ∈∈∈∈ S. Si ∩∩∩∩ X = {x}

– Any subset of k items has each member isolated from k-1 

others in some set
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First Round

� Use k’ strongly separating sets to identify superset of 
k’ largest coefficients.

� k’ chosen based on p to ensure total “weight” of tail is 
so small that we can identify the k largest

� Combine groups with matrix H to find candidates

top-k item (k=3)

top-k’ item (k’=6)

k’-tail item

At most poly(k’, log n) candidates



24

Second Round

� Use more strongly separating sets to separate out the 
candidates. (only need to know bound on C in advance)

� Get a good estimate for each coefficient: find a group it 
is isolated in, and use measurement of that group

– can bound error in terms of ε, k, ||Ck
opt||2

2

At most C = poly(k’, log n)
candidates
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Picking k largest

� Pick approximate k largest, and argue that coefficients 
we pick are good enough even if not the true k largest.

� Set up a bijection between the true top-k and the approx 
top-k, argue that the error cannot be too large. 

� Careful choice of k’ and k’’ gives error that is
‖‖‖‖Rk – A‖‖‖‖2

2 < ‖‖‖‖Rk
opt – A‖‖‖‖2

2 + ε‖‖‖‖Ck
opt‖‖‖‖2

2

� Thus, explicit construction using O((kεp)4/(1-p)²log4 n)
(poly(k,log n) for constant 0 < p < 1) measurements.

Open problem: Improve bounds, remove dependency on p

True top-k

Approx top-k 

(bounded error)
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New Directions

� Universality

� Error Resilience

� Distributed Compressed Sensing

� Continuous Distributed CS

� Functional Compressed Sensing

� Links to Dimensionality Reduction

� Lower Bounds
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Universality

� Often want to first transform the signal with T

� So we compute (ψT)A = ψ(TA)

� What if we don’t know T till after measuring? 

� If ψ is all Gaussians, we can write ψ = ψ’T, where ψ’ is 
also distributed Gaussian

� We can solve to find ψ’ and hence decode (probably)

� Only works for LP-based methods with Gaussians.  

Open question: is there any way to use the group testing 
approach and obtain (weaker) universality? 
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Error Resilience

� Various models of (random) errors: 

– signal is distorted by additive noise

– certain measurements distorted by noise

– certain measurements lost (erased) entirely

� LP techniques and group testing techniques both 

naturally and easily incorporate various error models

Open problem: extend to other models of error.  
More explicitly link CS with Coding theory. 

+
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Distributed Compressed Sensing

� Slepian-Wolf theorem: two correlated sources can be 
coded to use a total bandwidth proportional to their joint 

entropy without direct communication between two

� Apply to CS: consider correlated signals seen by multiple 

observers, they send measurements to a referee

– Aim for communication proportional to CS bound

– Different correlations: sparse common signal plus 

sparse/dense variations, etc Initial results in [Baraniuk+ 05]

Open Problem: other arbitrary network graphs?

1A

0 1
1

1 1

0
0

1

1 0

2A

0

1
1

0

1
1

0

1
1

0

1
1

3A
6A

5A
4A
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Continuous Distributed CS

� Different setting: each site sees part of a signal, want to 
compute on sum of the signals

� These signals vary “smoothly” over time, efficiently 
approximate the signal at coordinator site

� Statement and initial result in [Muthukrishnan 06]

Coordinator

m sites

local signal(s) 

seen at each 

site

A1 Am

Track A1+…+Am
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Functional Compressed Sensing

� In “traditional” CS, goal is accurate reconstruction of A

� Often, this is then used for other purposes

� Remember CS credo: measure for final goal

– E.g. suppose we want to compute equidepth histograms, 

why represent A then compute histogram?

– Instead, design measurements to directly compute function

� Initial results: quantiles on A[i]2 [Muthukrishnan 06]

– Different to previous sublinear work: need “for all” properties

– Results in [Ganguly, Majumder 06] also apply here

f(     )
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Links to dimensionality reduction

� Johnson-Lindenstrauss lemma [JL 84]: Given a set of m
points in n-dimensional Euclidean space, project to O(log

m) dimensions and approximately preserve distances

– Projections often via Gaussian random vectors

– Intuitively related to CS somehow?

� [Baraniak et al 06] use JL-lemma to prove the “Restricted 
Isometry Property” needed to show existence of CS 

measurements

Open problem: further simplify CS proofs, use tools such as 
JL lemma and other embedding-like results
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Lower Bounds

� Upper bounds are based on precise measurements

� But real measurements are discrete (encoded in bits)

Open Problems:

� What is true bit complexity needed by these algorithms? 

� What is a lower bound on measurements needed?

– Ω(k) or Ω(k log k/n)?

� How to relate to DSP-lower bounds: Nyquist bound etc.?

� LP formulation is over-constrained, can it be solved 
faster?
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Conclusions

� A simple problem with a deep mathematical foundation

� Many variations and extensions to study

� Touches on Computer Science, Mathematics, EE, DSP…

� May have practical implications soon (according to the 

press)


