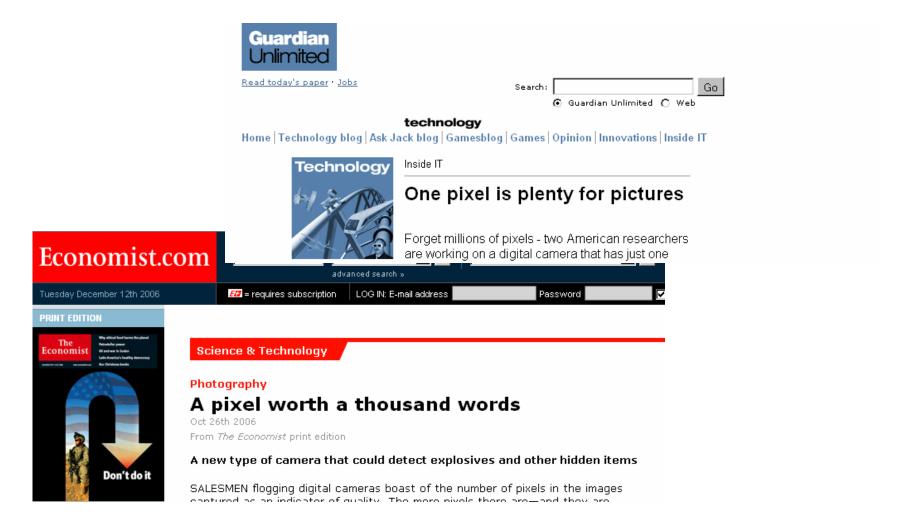
A Compact Survey of Compressed Sensing

Graham Cormode

graham@research.att.com

Compressed Sensing In the News



Compressed Sensing on the Web

Discovery and Initial Papers

- Emmanuel Candès, Justin Romberg and Terence Tao, Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. (IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006)
- Emmanuel Candès and Justin Romberg, Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions. (To appear in Foundations of Computational Mathematics)
- Emmanuel Candès and Terence Tao, Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? (To appear in IEEE Trans. on Information Theory)
- David Donoho, Compressed Sensing. (IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006)

Compressed Sensing in Practice

Practical Signal Recovery

- Emmanuel Candès and Justin Romberg, Practical Signal Recovery from Random Projections. (Preprint, Jan. 2005)
- David Donoho and Yaakov Tsaig, Extensions of Compressed Sensing. (Signal Processing, 86(3), pp. 533-548, March 2006.)
- Joel Tropp and Anna Gilbert, Signal Recovery From Partial Information Via Orthogonal Matching Pursuit. (Preprint, 2005)
- Marco Duarte, Michael Wakin and Richard Baraniuk, Fast Reconstruction of Piecewise Smooth Signals from Random Projections. (Proc. SPARS Workshop, Nov. 2005)
- Chinh La and Minh Do, Signal Reconstruction using Sparse Tree Representations. (Proc. SPIE Wavelets XI, Sep. 2005)
- Gabriel Peyré, Best Basis Compressed Sensing. (Preprint, 2006) [See also related conference publication: NeuroComp 2006]
- Michael Elad, Optimized Projections for Compressed Sensing. (Preprint, 2006)

Compressed Sensing in Noise

- Jarvis Haupt and Rob Nowak, Signal Reconstruction from Noisy Random Projections. (IEEE Trans. on Information Theory, 52(9), pp. 4036-4048, Sep. 2006)
- Emmanuel Candès, Justin Romberg and Terence Tao, Stable Signal Recovery from Incomplete and Inaccurate Measurements. (Communications on Pure and Applied Mathematics, 59(8), pp. 1207-1223, Aug. 2006)
- Emmanuel Candès and Terence Tao, The Dantzig Selector: Statistical Estimation When p is Much Larger Than n (To appear in Annals of Statistics)
- Shriram Sarvotham, Dror Baron and Richard Baraniuk, Measurements vs. Bits: Compressed Sensing Meets Information Theory. (Proc. Forty-Fourth Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep. 2006)
- Martin J. Wainwright, Sharp Thresholds for High-Dimensional and Noisy Recovery of Sparsity (Proc. Forty-Fourth Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep. 2006)

Foundations and Connections

Coding and Information Theory

- Emmanuel Candès and Terence Tao, Decoding by Linear Programming. (IEEE Trans. on Information Theory, 51(12), pp. 4203-4215, Dec. 2005)
- France France Tao France Correction via Linear Programming (Prenrint 2005)

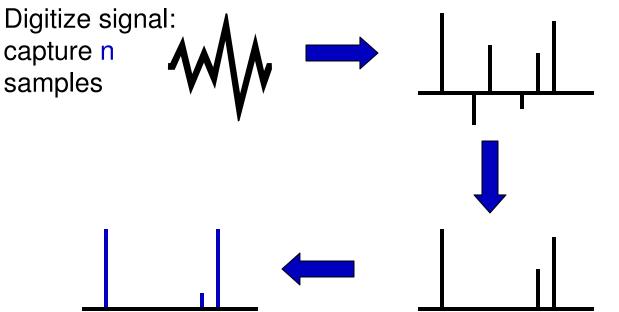
www.dsp.ece.rice.edu/CS/ lists over 60 papers on "Compressed Sensing"...

So... what is Compressed Sensing?

- Will introduce the CS problem and initial results
- Outline the (pre)history of Compressed Sensing
- Algorithmic/Combinatorial perspectives and new results
- Whither Compressed Sensing?

Signal Processing Background

Digital Signal Processing / Capture:

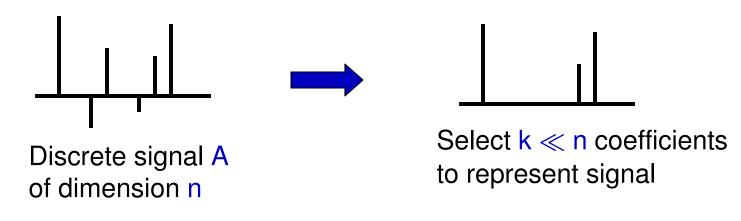


Losslessly transform into appropriate basis (eg FFT, DCT)

Pick $k \ll n$ coefficients to represent signal

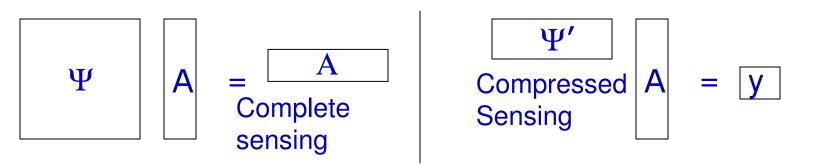
Quantize coefficients, encode and store

DSP Simplified



- Observation: we make n measurements, but only end up storing k pieces of information
- What if measurements are very costly,
 - E.g. each one requires a separate hardware sensor
 - E.g. Medical imaging, patient is moved through scanner
- (Also, why do whole transform?, sometimes expensive)

The Compressed Sensing Credo



- Only measure (approximately) as much as is stored
- Measurement cost model:
 - Each measurement is a vector ψ_i of dimension n
 - Given ψ_i and signal (vector) A, measurement = $\psi_i \cdot A = y_i$
 - Only access to signal is by measuring
 - Cost is **number** of measurements
- Trivial solution: $\psi_i = 1$ at location i, 0 elsewhere
 - Gives exact recovery but needs n measurements

Error Metric

- Let R^k be a representation of A with k coefficients
- Define "error" of representation R^k as sum squared difference between R^k and A: ||R^k A||₂²
- Picking k largest values minimizes error
 - Hence, goal is to find the "top-k"
- Denote this by R_{opt}^{k} and aim for error $\|R_{opt}^{k} A\|_{2}^{2}$

"The" Compressed Sensing Result

Recover A "well" if A is "sparse" in few measurements

"well" and "sparse" to be defined later

Only need O(k log n/k) measurements

- Each ψ_i [j] is drawn randomly from iid Gaussian
- Set of solutions is all x such that $\psi x = y$
- Output A' = argmin $||x||_1$ such that $\psi x = y$
 - Can solve by linear programming

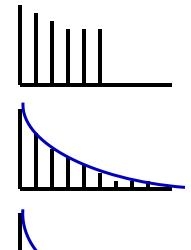
Why does it work?

[Donoho 04, Candes-Tao 04, Rudelson-Vershynin 04...]

- Short answer: randomly chosen values ensure a set of properties of measurements \u03c8 will work
 - The unexpected part: working in the L₁ metric optimizes error under L₂² with small support ("L₀ metric").
 - ψ works for any vector **A** (with high probability)
 - Other measurement regimes (eg Bernoulli ± 1)
- Long answer: read the papers for in-depth proofs that ψ has required properties (whp) and why they suffice
 - E.g. bounds on minimal singular value of each submatrix of ψ up to certain size

Sparse signals

- How to model signals well-represented by k terms?
 - k-support: signals that have k non-zero coefficients under Ψ . So $||R_{opt}^{k} A||_{2}^{2} = 0$
 - p-compressible: sorted coefficients have a power-law like decay: $|\theta_i| = O(i^{-1/p})$. So $||R_{opt}^k - A||_2^2 = O(k^{1-2/p}) = ||C_k^{opt}||_2^2$
 - α -exponentially decaying: even faster decay $|\theta_i| = O(2^{-\alpha i})$.
 - general: no assumptions on $||\mathbf{R}_{opt}^{k} \mathbf{A}||_{2}^{2}$.
- (After an appropriate transform) many real signals are p-compressible or exponentially decaying. k-support is a simplification of this model.



Sparse Signals

Original CS results apply principally to k-support and pcompressible signals.

- They guarantee exact recovery of k-support signals
- They guarantee "class-optimal" error on p-compressible
 - $\|\mathbf{R}^{k}_{opt}-\mathbf{A}\|_{2}^{2} = O(k^{1-2/p}) = \|\mathbf{C}_{k}^{opt}\|_{2}^{2}$
 - May not relate to the best possible error for that signal
 - (Algorithm does not take p as a parameter)

k-support

p-compressible

Prehistory of Compressed Sensing

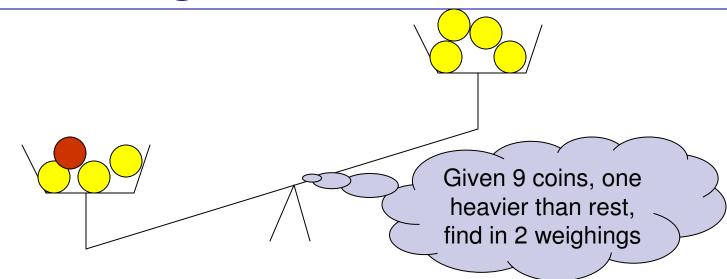
Related ideas have been around for longer than 2 years...

- Main results evolved through a series of papers on "a generalized uncertainty theorem" (Donoho/Candes-Tao...)
- Mansour 1992: "Randomized approximation and interpolation of sparse polynomials" by few evaluations of polynomial.
 - Evaluating a polynomial is dual of making a measurement
 - Algorithmic Idea: divide and conquer for the largest coefficient, remove it and recurse on new polynomial
 - Can be thought of as 'adaptive group testing', but scheme is actually non-adaptive

More Prehistory

- Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss (and subsets thereof) worked on various fourier and wavelet representation problems in *data streams*
- Underlying problems closely related to Compressed Sensing: with restricted access to data, recover k out of n representatives to accurately recover signal (under L₂)
- Results are stronger (guarantees are instance-optimal) but also weaker (probabilistic guarantee per signal)
- Underlying technique is (non-adaptive) group testing.

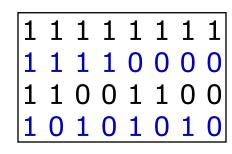
Group Testing



- Break items (signal values) into groups
- Measure information on groups using binary vectors
 - Interpret results as positive or negative
- Recover identity of "heavy" items, and their values
- Continue (somehow) until all coefficients are found
 - General benefit: decoding tends to be much faster than LP

Trivial Group Testing

- Suppose A is 1-support signal (i.e. zero but for one place)
- Adaptive group testing: measure first half and second half, recurse on whichever is non-zero
- Non-adaptive: do in one pass using Hamming matrix H
 - log 2n x n matrix: log 2n measurements
 - The i'th column encodes i in binary
 - Measure A with H, read off location of the non-zero position, and its value



- Hamming matrix often used in group testing for CS
 - if a group has one large value and the rest "noise", using H on the group recovers item

Group Testing

- From [C, Muthukrishnan 05], which specifically applies group testing to Compressed Sensing:
- From O(c k/ε² log³ n) measurements, with probability at least 1 n^{-c}, and in time O(c² k/ε² log³ n) we find a representation R^k of A so ||R^k − A||₂² ≤ (1+ε) ||R^k_{opt} − A||₂² (instance optimal) and R has support k.
- Randomly break into groups so not too many items fall in each group, encode as binary measurements using H
- Show good probability for recovering k largest values
- Repeat independently several times to improve probability

More Group Testing Results

- [Gilbert, Strauss, Tropp, Vershynin 06] develop new approaches with iterative recovery from measurements
 - Aiming for stronger "one set of measurements for all"
 - Must restate bounds on quality of representation
 - See next talk for full details!
- [Savotham, Baron, Baraniuk 06] use a more heuristic group testing approach, "sudocodes"
 - Make groups based on random divisions, no H
 - Use a greedy inference algorithm to recover
 - Seems to work pretty well in practice, needs strong assumptions on non-adversarial signals to analyze

Combinatorial Approaches

- A natural TCS question: if measurement sets exist which are good for all signals, can we construct them explicitly?
- Randomized Gaussian approach are expensive to verify check complex spectral properties of all (^N_k) submatrices
- Do there exist combinatorial construction algorithms that explicitly generate measurement matrices for CS?
 - In n poly(log n,k) time, with efficient decoding algs.

K-support algorithms

- Achieve O(k² poly(log n)) measurements for k-support based on defining groups using residues modulo k log n primes > k [Muthukrishnan, Gasieniec 05]
 - Chinese remainder theorem ensures each non-zero value isolated in some group
 - Decode using Hamming matrix
- Apply k-set structure [Ganguly, Majumdar 06]
 - Leads to O(k² poly(log n)) measurements
 - Use matrix operations to recover
 - Decoding cost somewhat high, O(k³)

More k-support algorithms

- Using "k-strongly separating sets" (from explicit constructions of expanders) [C, Muthukrishnan 06]
 - Similar isolation guarantees yield O(k² log² n) measurements
- [Indyk'06] More directly uses expanders to get $O(k2^{O(\log \log n)^2}) = O(kn^{\alpha})$ for $\alpha > 0$ measurements

- Bug Piotr to write up the full details...

Open question: seems closely related to coding theory on non-binary vectors, how can one area help the other

- Problem seems easier if restricted to non-negative signals

p-Compressible Signals

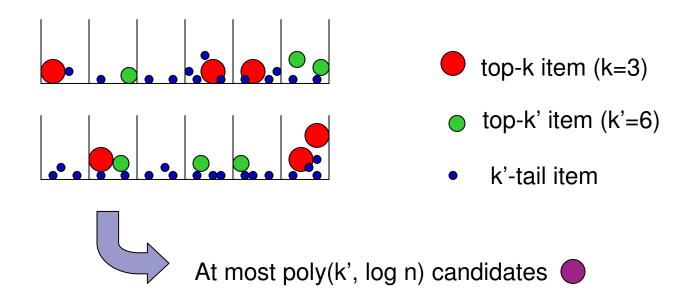
Explicit construction for p-compressible signals based on group testing [C, Muthukrishnan 06]

Approach: use two parallel rounds of group testing to find k' > k large coefficients, and separate these to allow accurate estimation.

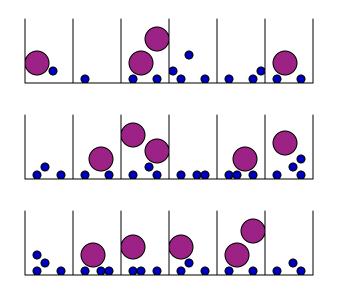
- Make use of K-strongly separating sets:
 - $\begin{array}{l} \hspace{0.1 cm} S= \{S_{1} \ldots S_{m}\} \hspace{0.1 cm} m=O(k^{2}log^{2}n) \\ \hspace{0.1 cm} \text{For} \hspace{0.1 cm} X \subset [n], \hspace{0.1 cm} |X| \leq k, \hspace{0.1 cm} \forall \hspace{0.1 cm} x \in X. \hspace{0.1 cm} \exists \hspace{0.1 cm} S_{i} \in S. \hspace{0.1 cm} S_{i} \cap X = \{x\} \end{array}$
 - Any subset of k items has each member isolated from k-1 others in some set

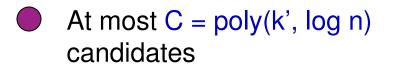
First Round

- Use k' strongly separating sets to identify superset of k' largest coefficients.
- k' chosen based on p to ensure total "weight" of tail is so small that we can identify the k largest
- Combine groups with matrix H to find candidates



Second Round





- Use more strongly separating sets to separate out the candidates. (only need to know bound on C in advance)
- Get a good estimate for each coefficient: find a group it is isolated in, and use measurement of that group
 - can bound error in terms of ε , k, $||C_k^{opt}||_2^2$

Picking k largest

- Pick approximate k largest, and argue that coefficients we pick are good enough even if not the true k largest.
- Set up a bijection between the true top-k and the approx top-k, argue that the error cannot be too large.

- Careful choice of k' and k'' gives error that is $\|\mathbf{R}^{k} - \mathbf{A}\|_{2}^{2} < \|\mathbf{R}^{k}_{opt} - \mathbf{A}\|_{2}^{2} + \varepsilon \|\mathbf{C}_{k}^{opt}\|_{2}^{2}$
- Thus, explicit construction using O((ke^p)^{4/(1-p)²}log⁴ n) (poly(k,log n) for constant 0

Open problem: Improve bounds, remove dependency on p

New Directions

- Universality
- Error Resilience
- Distributed Compressed Sensing
- Continuous Distributed CS
- Functional Compressed Sensing
- Links to Dimensionality Reduction
- Lower Bounds

Universality

- Often want to first transform the signal with T
- So we compute $(\psi T)A = \psi(TA)$
- What if we don't know T till after measuring?
- If ψ is all Gaussians, we can write ψ = ψ'T, where ψ' is also distributed Gaussian
- We can solve to find ψ ' and hence decode (probably)
- Only works for LP-based methods with Gaussians.

Open question: is there any way to use the group testing approach and obtain (weaker) universality?

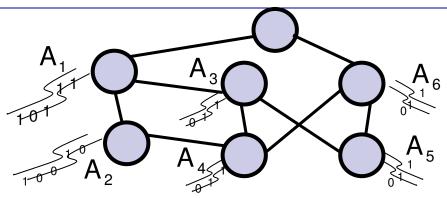
Error Resilience

Various models of (random) errors:

- signal is distorted by additive noise
- certain measurements distorted by noise
- certain measurements lost (erased) entirely
- LP techniques and group testing techniques both naturally and easily incorporate various error models

Open problem: extend to other models of error. More explicitly link CS with Coding theory.

Distributed Compressed Sensing

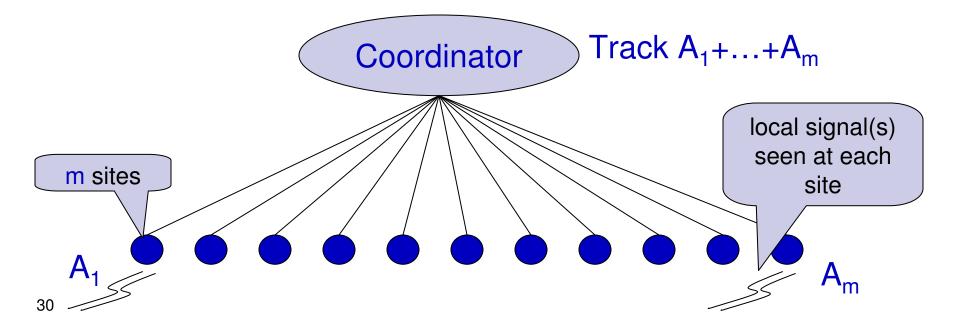


- Slepian-Wolf theorem: two correlated sources can be coded to use a total bandwidth proportional to their joint entropy without direct communication between two
- Apply to CS: consider correlated signals seen by multiple observers, they send measurements to a referee
 - Aim for communication proportional to CS bound
 - Different correlations: sparse common signal plus sparse/dense variations, etc Initial results in [Baraniuk+ 05]

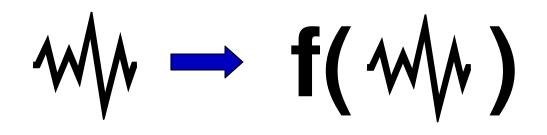
Open Problem: other arbitrary network graphs?

Continuous Distributed CS

- Different setting: each site sees part of a signal, want to compute on sum of the signals
- These signals vary "smoothly" over time, efficiently approximate the signal at coordinator site
- Statement and initial result in [Muthukrishnan 06]

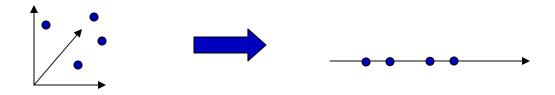


Functional Compressed Sensing



- In "traditional" CS, goal is accurate reconstruction of A
- Often, this is then used for other purposes
- Remember CS credo: measure for final goal
 - E.g. suppose we want to compute equidepth histograms, why represent A then compute histogram?
 - Instead, design measurements to directly compute function
- Initial results: quantiles on A[i]² [Muthukrishnan 06]
 - Different to previous sublinear work: need "for all" properties
 - Results in [Ganguly, Majumder 06] also apply here

Links to dimensionality reduction



- Johnson-Lindenstrauss lemma [JL 84]: Given a set of m points in n-dimensional Euclidean space, project to O(log m) dimensions and approximately preserve distances
 - Projections often via Gaussian random vectors
 - Intuitively related to CS somehow?
- [Baraniak et al 06] use JL-lemma to prove the "Restricted Isometry Property" needed to show existence of CS measurements

Open problem: further simplify CS proofs, use tools such as JL lemma and other embedding-like results

Lower Bounds

- Upper bounds are based on precise measurements
- But real measurements are discrete (encoded in bits)

Open Problems:

- What is true bit complexity needed by these algorithms?
- What is a lower bound on measurements needed?
 - $\Omega(\mathbf{k})$ or $\Omega(\mathbf{k} \log \mathbf{k}/n)$?
- How to relate to DSP-lower bounds: Nyquist bound etc.?
- LP formulation is over-constrained, can it be solved faster?

Conclusions

- A simple problem with a deep mathematical foundation
- Many variations and extensions to study
- Touches on Computer Science, Mathematics, EE, DSP...
- May have practical implications soon (according to the press)