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Modeling Science
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Science, June 24, 1994
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6• Our data are Science from 1880-2002, courtesy of JSTOR.

• We have 130K documents, 76M words.

• Goal: Discover a latent thematic structure in this corpus, useful for
browsing, search, and similarity assessment.
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Topic models

• Use multinomial distributions over the vocabulary, called topics, to
describe a collection of documents in a hierarchical model

• Treat documents as arising from a generative probabilistic process
that includes hidden themes

• Discover those themes using posterior inference

• Useful for many kinds of tasks

• Organization
• Classification
• Collaborative filtering
• Information retrieval
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Outline

• Latent Dirichlet allocation

• Dynamic Topic Models

• Correlated Topic Models

D. Blei Modeling Science 4 / 29



Intuition behind LDA

Simple intuition: Documents exhibit multiple topics.
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Generative process

• Cast these intuitions into a generative probabilistic process

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics
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Generative process

• In reality, we only observe the documents

• Our goal is to infer the underlying topic structure

• What are the topics?
• How are the documents divided according to those topics?
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Graphical models (Aside)
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• Nodes are random variables

• Edges denote possible dependence

• Observed variables are shaded

• Plates denote replicated structure
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Graphical models (Aside)
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• Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

• E.g., this graph corresponds to

p(y , x1, . . . , xN) = p(y)
N∏

n=1

p(xn | y)
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

1 Draw each topic βi ∼ Dir(η), for i ∈ {1, . . . ,K}.
2 For each document:

1 Draw topic proportions θd ∼ Dir(α).
2 For each word:

1 Draw Zd ,n ∼ Mult(θd).
2 Draw Wd ,n ∼ Mult(βzd,n

).
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• From a collection of documents, infer

• Per-word topic assignment zd ,n

• Per-document topic proportions θd

• Per-corpus topic distributions βk

• Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

Computing the posterior is intractable, but we can use:

• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Collapsed variational inference (Teh et al., 2006)
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Example inference

• Data: The OCR’ed collection of Science from 1990–2000

• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.
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Example inference
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Example topics

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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Latent Dirichlet allocation

• LDA is a powerful model for

• Visualizing the hidden thematic structure in large corpora
• Generalizing new data to fit into that structure

• LDA is a mixed membership model (Erosheva, 2004).

• For document collections and other grouped data, this might
be more appropriate than a simple finite mixture

• See Blei et al., 2003 for a quantitative comparison.

• Modular : It can be embedded in more complicated models.

• General : The data generating distribution can be changed.

• Variational inference is fast; allows us to analyze large data sets.

• Code to play with LDA is freely available on my web-site,
http://www.cs.princeton.edu/∼blei.
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Dynamic Topic Models
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LDA and exchangeability

θd Zd,n Wd,n
N

D K
βk

α η

• LDA assumes that documents are exchangeable.

• I.e., their joint probability is invariant to permutation.

• This is too restrictive.
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Documents are not exchangeable

"Infrared Reflectance in Leaf-Sitting 
Neotropical Frogs" (1977)"Instantaneous Photography" (1890)

• Documents about the same topic are not exchangeable.

• Topics evolve over time.
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Dynamic topic model

• Divide corpus into sequential slices (e.g., by year).

• Assume each slice’s documents exchangeable.

• Drawn from an LDA model.

• Allow topic distributions evolve from slice to slice.
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Dynamic topic models
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Analyzing a document

Original article Topic proportions
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Analyzing a document
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Analyzing a topic

 1880
electric

machine
power
engine
steam

two
machines

iron
battery

wire 

 1890
electric
power

company
steam

electrical
machine

two
system
motor
engine 

 1900
apparatus

steam
power
engine

engineering
water

construction
engineer

room
feet 

 1910
air

water
engineering
apparatus

room
laboratory
engineer

made
gas
tube 

 1920
apparatus

tube
air

pressure
water
glass
gas

made
laboratory
mercury 

 1930
tube

apparatus
glass

air
mercury

laboratory
pressure

made
gas

small 

 1940
air

tube
apparatus

glass
laboratory

rubber
pressure

small
mercury

gas 

 1950
tube

apparatus
glass

air
chamber

instrument
small

laboratory
pressure
rubber 

 1960
tube

system
temperature

air
heat

chamber
power
high

instrument
control 

 1970
air

heat
power
system

temperature
chamber

high
flow
tube

design 

 1980
high

power
design
heat

system
systems
devices

instruments
control
large 

 1990
materials

high
power
current

applications
technology

devices
design
device
heat 

 2000
devices
device

materials
current

gate
high
light

silicon
material

technology 

D. Blei Modeling Science 19 / 29



Visualizing trends within a topic
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Time-corrected document similarity

The Brain of the Orang (1880)
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Time-corrected document similarity

Representation of the Visual Field on the Medial Wall of
Occipital-Parietal Cortex in the Owl Monkey (1976)
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Browser of Science
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Correlated Topic Models
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The hidden assumptions of the Dirichlet distribution

• The Dirichlet is an exponential family distribution on the simplex,
positive vectors that sum to one.

• However, the near independence of components makes it a poor
choice for modeling topic proportions.

• An article about fossil fuels is more likely to also be about geology
than about genetics.
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The logistic normal distribution

• The logistic normal is a distribution on the simplex that can model
dependence between components.

• The natural parameters of the multinomial are drawn from a
multivariate Gaussian distribution.

X ∼ NK−1(µ,Σ)

θi = exp{xi − log(1 +
∑K−1

j=1 exp{xj})}
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Summary

• Topic models provide useful descriptive statistics for understanding
the latent thematic structure of text data.

• But, models come with hidden assumptions, e.g.,

• Exchangeability
• Component-wise independence

• Current research

• Choosing the number of topics
• Continuous time dynamic topic models
• Topic models for prediction
• Inferring the impact of a document

• Download code and papers at
http://www.cs.princeton.edu/∼blei.
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“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from
finding, and evading, still deeper lying constraints.” (Tukey, 1962)
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