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What is R0?

Basic Reproduction Number
Net Reproductive Rate

“the average number of secondary infections produced when one
infected individual is introduced into a host population where
everyone is susceptible” (Anderson & May, 1991)
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Why is R0 important?

• For a wholly susceptible host population,
R0 > 1 pathogen can invade.
R0 < 1 pathogen cannot invade.

• When a pathogen is present in the population, often,
but not always,

R0 < 1 pathogen will die out of the population.
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The effective reproduction number, R

If the population is not wholly susceptible, then we have
R, the effective reproduction number.

• Pathogen already present
• Vaccinated population
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How to compute R0?

• Heuristic methods
• Systematic method

P. van den Driessche & James Watmough, 2002, “Reproduction numbers
and sub-threshold endemic equilibria for compartmental models of disease
transmission”, Mathematical Biosciences, 180: 29–48.



Intro Computing R0 Complex models

Example model for STI

MS ME MI MR

FS FE FI FR

dMS

dt = ωMMR − βM
FI

F MS
dFS

dt = ωFFR − βF
MI

M FS

dME

dt = βM
FI

F MS − τMME
dFE

dt = βF
MI

M FS − τFFE

dMI

dt = τMME − γMMI
dFI

dt = τFFE − γFFI

dMR

dt = γMMI − ωMMR
dFR

dt = γFFI − ωMFR



Intro Computing R0 Complex models

Procedure
Decide which states are infected

We need to decide which states are infected and which are
uninfected.

In the STI model,
Infected: ME,FE,MI,FI
Uninfected: MS,FS,MR,FR
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Procedure
Find disease-free equilibrium (or other equilibrium)

Set dx
dt = 0 for all model state variables to find equilibrium.

Also, for disease-free equilibrium, there are no infected people.
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Procedure
Find disease-free equilibrium (or other equilibrium)

0 = ωMMR − βM
0
F MS 0 = ωFFR − βF

0
M FS

0 = βM
0
F MS − τM0 0 = βF

0
M FS − τF0

0 = τM0− γM0 0 = τF0− γF0
0 = γM0− ωMMR 0 = γF0− ωFFR

MS = FS =
P
2

ME = FE = MI = FI = MR = FR = 0

M = F =
P
2
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Procedure
Decide which terms are new infections

From the right-hand sides of the equations for the infected states,
decide which terms represent new infections, F .
The remainder are −V.

dx
dt = F − V

F is the rate of production of new infections.
V is the transition rates between states.
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Procedure
Decide which terms are new infections

dME

dt = βM
FI

F MS − τMME

dFE

dt = βF
MI

M FS − τFFE

dMI

dt = τMME − γMMI

dFI

dt = τFFE − γFFI

F =


βM

FI
F MS

βF
MI
M FS
0
0

 , V =


τMME
τFFE

−τMME + γMMI
−τFFE + γFFI





Intro Computing R0 Complex models

Procedure
Take derivatives at equilibrium

F =
dF
dx =


dF1
dx1

· · · dF1
dxn... ...

dFn
dx1

· · · dFn
dxn

 V =
dV
dx =


dV1
dx1

· · · dV1
dxn... ...

dVn
dx1

· · · dVn
dxn


These are the rates for new infections and transitions near the
equilibrium.
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Procedure
Take derivatives at equilibrium

At the disease-free equilibrium,

MS = FS = M = F =
P
2 ,

ME = FE = MI = FI = MR = FR = 0

F =


βM

FI
F MS

βF
MI
M FS
0
0

 , F =


0 0 0 βM

MS
F

0 0 βF
FS
M 0

0 0 0 0
0 0 0 0

 =


0 0 0 βM
0 0 βF 0
0 0 0 0
0 0 0 0



V =


τMME
τFFE

−τMME + γMMI
−τFFE + γFFI

 , V =


τM 0 0 0
0 τF 0 0
−τM 0 γM 0
0 −τF 0 γF





Intro Computing R0 Complex models

Procedure
Find V−1

V−1 gives the times spent in each state.
In general, finding the inverse is difficult by hand, but computer
algebra (Sage, Maple, Mathematica) takes care of that.

V−1 =


1
τM

0 0 0
0 1

τF
0 0

1
γM

0 1
γM

0
0 1

γF
0 1

γF



http://www.sagemath.org/
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/index.html
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Procedure
Find FV−1

FV−1 gives the total production of new infections over the course
of an infection.

F =

0 0 0 βM
0 0 βF 0
0 0 0 0
0 0 0 0

 , V−1 =


1
τM

0 0 0
0 1

τF
0 0

1
γM

0 1
γM

0
0 1

γF
0 1

γF



FV−1 =


0 βM

γF
0 βM

γF
βF
γM

0 βF
γM

0
0 0 0 0
0 0 0 0
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Procedure
Find ρ(FV−1)

The largest eigenvalue λ0 gives the fastest growth of the infected
population. (

FV−1
)N
→ λN

0 v0 for large N.

So R0 = λ0.

FV−1 =


0 βM

γF
0 βM

γF
βF
γM

0 βF
γM

0
0 0 0 0
0 0 0 0


σ(FV−1) =

{
0,
√
βFβM
γMγF

,−
√
βFβM
γMγF

}
=⇒ R0 =

√
βFβM
γMγF
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Alternative interpretation

If we had chosen only FE & FI to be infected states, then

R0 =
βFβM
γMγF
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More complex models
Flu

RIS

dSa
dt = −λaSa

dIa
dt = λaSa − (γa + νa)Ia, λa =

σa
N

17∑
α=1

φaαβαIα,

dRa
dt = γaIa, for a = 1, . . . , 17
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More complex models
Flu

• Ia are infected states
• Equilibrium is everyone susceptible, with given age structure
• New-infection term is λaSa, so

F = λ⊗ S, V = (γ + ν)⊗ I

• Then

F =

{[
σ ⊗ S

N

]
βT
}
⊗ φ, V = diag (γ + ν)

• And
FV−1 =

{[
σ � (γ + ν)⊗ S

N

]
βT
}
⊗ φ
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More complex models
Flu

Putting in parameter values from the pandemics, we get
1918 R0 = 1.2
1957 R0 = 1.3

Pr
op
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n
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Time (days)

1957
1918

0.00

0.01

0.02
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