Queuing Theory Equations
Definition
A = Arrival Rate
1 = Service Rate
p=rlp
C = Number of Service Channels

M = Random Arrival/Service rate (Poisson)

D = Deterministic Service Rate (Constant rate)

M/D/1 case (random Arrival, Deterministic service, and one service channel)
Expected average queue length E(m)= (2p- p°)/ 2 (1- p)
Expected average total time E(v)=2-p/2 u (1- p)

Expected average waiting time E(w)=p/2 pn (1- p)

M/M/1 case (Random Arrival, Random Service, and one service channel)

The probability of having zero vehicles in the systems P,=1-p
The probability of having n vehicles in the systems P,= pn Po
Expected average queue length E(m)=p / (1- p)
Expected average total time E(v)=p/ A (1- p)

Expected average waiting time E(w) = E(v) — 1/n



M/M/C case (Random Arrival, Random Service, and C service channel)

Note : s must be < 1.0
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The probability of having zero vehicles in the systems
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The probability of having n vehicles in the systems
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Expected average number in the systems
E(n) =E(m) +p

Expected average total time E(v) =E(n) / A

Expected average waiting time E(w) = E(v) — 1/



M/M/C/K case (Random Arrival, Random Service, and C service Channels and K
maximum number of vehicles in the system)

The probability of having zero vehicles in the systems
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