Queuing Theory Equations

Definition

$\lambda=$ Arrival Rate
μ = Service Rate
$\rho=\lambda / \mu$
C = Number of Service Channels
M = Random Arrival/Service rate (Poisson)
D = Deterministic Service Rate (Constant rate)

M/D/1 case (random Arrival, Deterministic service, and one service channel)
Expected average queue length $E(m)=\left(2 \rho-\rho^{2}\right) / 2(1-\rho)$
Expected average total time $E(v)=2-\rho / 2 \mu(1-\rho)$
Expected average waiting time $E(w)=\rho / 2 \mu(1-\rho)$

M/M/1 case (Random Arrival, Random Service, and one service channel)
The probability of having zero vehicles in the systems $P_{0}=1-\rho$
The probability of having n vehicles in the systems $P_{n}=\rho^{n} P_{o}$
Expected average queue length $E(m)=\rho /(1-\rho)$
Expected average total time $E(v)=\rho / \lambda(1-\rho)$
Expected average waiting time $\mathrm{E}(\mathrm{w})=\mathrm{E}(\mathrm{v})-1 / \mu$

M/M/C case (Random Arrival, Random Service, and C service channel)

$$
\text { Note : } \frac{\rho}{c} \text { must be }<\mathbf{1 . 0}
$$

The probability of having zero vehicles in the systems

$$
\mathrm{P}_{\mathrm{o}}=\left[\sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}+\frac{\rho^{c}}{c!(1-\rho / c)}\right]^{-1}
$$

The probability of having n vehicles in the systems

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}} \frac{\rho^{n}}{n!} & \text { for } \mathrm{n}<\mathrm{c} \\
\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}} \frac{\rho^{n}}{c^{n-c} c!} & \text { for } \mathrm{n}>\mathrm{c}
\end{array}
$$

Expected average queue length

$$
\mathrm{E}(\mathrm{~m})=P_{o} \frac{\rho^{c+1}}{c c!} \frac{1}{(1-\rho / c)^{2}}
$$

Expected average number in the systems

$$
E(n)=E(m)+\rho
$$

Expected average total time $\mathrm{E}(\mathrm{v})=\mathrm{E}(\mathrm{n}) / \lambda$
Expected average waiting time $\mathrm{E}(\mathrm{w})=\mathrm{E}(\mathrm{v})-1 / \mu$

M/M/C/K case (Random Arrival, Random Service, and C service Channels and K

 maximum number of vehicles in the system)The probability of having zero vehicles in the systems
For $\frac{\rho}{c} \neq 1 \quad P_{o}=\left[\sum_{n=0}^{c-1}\left(\frac{1}{n!} \rho^{n}\right)+\left(\frac{\rho^{c}}{c!}\right)\left(\frac{1-\left(\frac{\rho}{c}\right)^{K-c+1}}{1-\frac{\rho}{c}}\right)\right]^{-1}$

For $\frac{\rho}{c}=1 \quad P_{o}=\left[\sum_{n=0}^{c-1}\left(\frac{1}{n!} \rho^{n}\right)+\left(\frac{\rho^{c}}{c!}\right)(K-c+1)\right]^{-1}$
$P_{n}=\frac{1}{n!} \rho^{n} P_{o} \quad$ for $0 \leq \mathrm{n} \leq \mathrm{c}$
$P_{n}=\left(\frac{1}{c^{\mathrm{ncc}} c!}\right) \rho^{\mathrm{n}} \mathrm{P}_{\mathrm{o}} \quad$ for $\mathrm{c} \leq \mathrm{n} \leq \mathrm{k}$
$E(m)=\frac{P_{o} \rho^{c}\left(\frac{\rho}{c}\right)}{c!\left(1-\frac{\rho}{c}\right)^{2}}\left[1-\left(\frac{\rho}{c}\right)^{k-c+1}-\left(1-\frac{\rho}{c}\right)(k-c+1)\left(\frac{\rho}{c}\right)^{k-c}\right]$
$E(n)=E(m)+c-P_{o} \sum_{n=0}^{c-1} \frac{(c-n) \rho^{n}}{n!}$
$E(v)=\frac{E(n)}{\lambda\left(1-P_{K}\right)}$
$E(w)=E(v)-\frac{1}{\mu}$

