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Endemic Model

9w = 5" sy~ uste)
L= 5" sy i) - )
dR

= l(t) — uR(2)

Constant population size:
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dt dt  dt  dt
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Endemic Model

So divide by population size
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Find equilibria

ds _di _
dt  dt
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Two equilibria:
= Disease-free equilibrium:

Eo=(s=1,i=0)
= Endemic equilibrium:

w5 e )
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Linearize equations

Write as vector differential equation
d s\ (p—pis—ps) .
dt (:) - (ﬂis i i) =)
By Taylor's theorem

f(s, i) = f(s0, i0) + J(s0, i0) Kf) - (fg)] 4o

At equilibrium, f(sp, ip) = 0, so the dynamics near (sp, ip) are
governed by the linear part J(sp, ip)
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Analysis
Jacobian derivative of f
o B _[Bi-n —ps
J(s,i) = L = .
eo-[ B[ W2
= Disease-free equilibrium
—H -6
J(1,0) =
L0=1 B=v—n

Eigenvalues {—u, 3 — p —~}
[ ] )\1 = —,LL < O

= =0-pu—vy
B . .
e < 1, stable, No epidemic

" B-p—v7<0 <=
" f—-p—7>0 % > 1, unstable, Epidemic

p

Ro= —"—
Y+n
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= Endemic equilibrium

yHp By _ [ 4
(e )‘[ e

YR

w(B=y—p)

YT H
0

. 252
Eigenvalues { priey \/(”ﬂ —4u(B —~v— ,u)}

= Ry == >1, stable

= Ry = v+/ < 1, unstable
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Summary
o B
Yt p

oyt 1 By ) op
Ee‘(“ 5 TR w84 R"))

= Ry<1

Disease-free equilibrium is stable

Endemic equilibrium is unstable (and nonsense!)
s Ry>1

Disease-free equilibrium is unstable

Endemic equilibrium is stable
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Vaccination model

ds .

ap = (=P —fis — ps
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dv

= - uv

dt Pl — 1

s+itr+v=1
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Analysis

Disease-free equilibrium:
Eo=(s=1-p,i=0,v=p)

Jacobian:

J(S,i,V): ﬂ’ /BS_’Y_M 0
0 0 —
—p —B(1 - p) 0
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Analysis
—p —B(1—p) 0
J(Eo)=|0 pBl-p)—7-—p O
0 0 —
A1p=—p <0

A3=p1-p)=v—n

p
M>0 <= RR=—(1—-—p)=Ry(l—p)>1
; (1) = Ro(1-p)

A3<0 <<= R/, <1

Stability determined by R,
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Critical vaccination level

1
Ro=Ry(l—p')=1= p*=1— -
Ro

p>p" = R, <1 No epidemic!

Tomorrow
o]



Endemic Model Vaccination
[e]e] 0000
00000

Tomorrow

= Ry for complex models
= Vector-borne disease model

= Age-structured model

Tomorrow
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