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Introduction to infectious disease modelling

Jamie Lloyd-Smith

Center for Infectious Disease Dynamics
Pennsylvania State University

with thanks to Ottar Bjornstad for sharing some slides…

Why do we model infectious diseases?

1. Gain insight into mechanisms influencing disease spread, and link
individual scale ‘clinical’ knowledge with population-scale patterns.

2. Focus thinking: model formulation forces clear statement of 
assumptions, hypotheses.

3. Derive new insights and hypotheses from mathematical analysis or 
simulation.

4. Establish relative importance of different processes and parameters, 
to focus research or management effort.

5. Thought experiments and “what if” questions, since real experiments 
are often logistically or ethically impossible.

6. Explore management options.

Note the absence of predicting future trends. Models are highly
simplified representations of very complex systems, and parameter 
values are difficult to estimate.

quantitative predictions are virtually impossible.

Following Heesterbeek & Roberts (1995)

Epidemic models: the role of data

Why work with data?
Basic aim is to describe real patterns, solve real problems.
Test assumptions!
Get more attention for your work

jobs, fame, fortune, etc
influence public health policy

Challenges of working with data
Hard to get good data sets.
The real world is messy!  And sometimes hard to understand.
Statistical methods for non-linear models can be complicated.

What about pure theory?
Valuable for clarifying concepts, developing methods, integrating ideas.
(My opinion) The world (and Africa) needs a few brilliant theorists, and 

many strong applied modellers.

Susceptible: naïve individuals, susceptible to disease

Exposed: infected by parasite but not yet infectious

Infectious: able to transmit parasite to others

Removed: immune (or dead) individuals that don’t contribute to 
further transmission

The SEIR framework for microparasite dynamics

E I RS

λ “Force of infection”
= β I under density-dependent transmission
= β I/N under frequency-dependent transmission

ν Rate of progression to infectious state
= 1/latent period

γ Rate of recovery 
= 1/infectious period

The SEIR framework for microparasite dynamics
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Ordinary differential equations 

are just one approach to 

modelling SEIR systems.
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Depending on time-scale of disease process (and your questions), 
add host demographic processes.
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Adapt model framework to disease biology and to your problem!  
No need to restrict to SEIR categories, if biology suggests otherwise.

e.g. leptospirosis has chronic shedding state SICR

Vector-borne disease
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How long does an individual spend in the E compartment?
Ignoring further input from new infections:

Residence times
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For a constant per capita rate of leaving compartment, the  

residence time in the compartment is exponentially distributed.

ODE model Data from   
SARS

t

Divide compartment into n sub-compartments, each with constant 
leaving rate of ν/n.

Residence times

E1
ν/n E2 En

ν/n ν/n…

How to make the model fit the data better?
• “Box-car model” is one modelling trick t

Data from   
SARS

IS
λ

See Wearing et al (2005) PLoS Med 2: e174

n=40

n=10
n=3 n=1

Residence time is now gamma-
distributed, with same mean and 
flexible variance depending on the 
number of sub-compartments.

Basic reproductive number, R0

Expected number of cases caused by a typical infectious individual 
in a susceptible population.

R0 ≤ 1

disease dies out

R0 > 1

disease can invade

Outbreak dynamics

• probability of fade-out

• epidemic growth rate

Disease control

• threshold targets

• vaccination levels
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Calculating R0 – Intuitive approach

× Duration of
infectiousness

Under frequency-dependent transmission:

Rate of infecting others = β S/N 
= β in wholly susceptible pop’n

Duration of infectiousness = 1/recovery rate 
= 1/γ

R0 = β / γ

R0 = Per capita rate 
of infecting others

… in a completely susceptible population.

Effective reproductive number
Expected number of cases caused by a typical infectious individual 

in a population that is not wholly susceptible.
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Epidemic disease: Reff changes as epidemic progresses, as 
susceptible pool is depleted.

Reff < 1Reff > 1
Note: Sometimes “effective 

reproductive number” is 
used to describe 
transmission in the 
presence of disease 
control measures. 

This is also called Rcontrol.

Reffective = R0 × S/N

Endemic disease: At equilibrium Reff = 1, so that S*/N = 1/R0

Reffective and herd immunity

Reffective = R0 × S/N

If a sufficiently high proportion of the population is immune, then 
Reffective will be below 1 and the disease cannot circulate.

The remaining susceptibles are protected by herd immunity.

The critical proportion of the population that needs to be immune is 
determined by a simple calculation:

• For Reff < 1, we need S/N < 1/R0

• Therefore we need a proportion 1-1/R0 to be immune.

• Epidemic threshold 
NOTE:  not every epidemic threshold parameter is R0!

• Probability of successful invasion
• Initial rate of epidemic growth
• Prevalence at peak of epidemic
• Final size of epidemic (or the proportion of susceptibles 

remaining after a simple epidemic)
• Mean age of infection for endemic infection
• Critical vaccination threshold for eradication
• Threshold values for other control measures

What does R0 tell you?

State variables

N(t) = Size of host population

M(t) = Mean number of sexually mature worms in host population

L(t) = Number of infective larvae in the habitat

The basic framework for macroparasite dynamics

LM

For macroparasites the intensity of infection matters!

Basic model for a directly-transmitted macroparasite:

death death

β infection rate
μ death rate of hosts
μ1 death rate of adult worms within hosts
μ2 death rate of larvae in environment
d1 proportion of ingested larvae that survive to adulthood
d2 proportion of eggs shed that survive to become infective larvae
τ1 time delay for maturation to reproductive maturity
τ2 time delay for maturation from egg to infective larva
s proportion of offspring that are female

Further complexities: parasite aggregation within hosts and 
density-dependent effects on parasite reproduction.

The basic framework for macroparasite dynamics
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For macroparasites, 
R0 is the average number of 
female offspring (or just 
offspring in the case of 
hermaphroditic species) 
produced throughout the 
lifetime of a mature female 
parasite, which themselves 
achieve reproductive maturity 
in the absence of density-
dependent constraints on the 
parasite establishment, 
survival or reproduction.

R0 for macroparasites

For macroparasites, Reff is the average number of female offspring 
produced in a host population within which density dependent 
constraints limit parasite population growth.

For microparasites, Reff is the reproductive number in the presence 
of competition for hosts at the population scale.

For macroparasites, Reff is the reproductive number in the 
presence of competition at the within-host scale.

For both, under conditions of stable endemic infection, Reff=1.

Effective R0 for macroparasites

Major decisions in designing a model 

Even after compartmental framework is chosen, still need to 
decide:

Deterministic vs stochastic

Discrete vs continuous time

Discrete vs continuous state variables

Random mixing vs structured population

Homogeneous vs heterogeneous

(and which heterogeneities to include?) 

Deterministic vs stochastic models

Deterministic models

• Given model structure, parameter values, and initial 
conditions, there is no variation in output.

Stochastic models incorporate chance.

• Stochastic effects are important when numbers are small, 
e.g. during invasion of a new disease

• Demographic stochasticity: variation arising because individual 
outcomes are not certain

• Environmental stochasticity: variation arising from fluctuations in 
the environment (i.e. factors not explicitly included in the 
model)

Important classes of stochastic epidemic models

Monte Carlo simulation

- Any model can be made stochastic by using a pseudo-random 
number generator to “roll the dice” on whether events occur.

Branching process

- Model of invasion in a large susceptible population

- Allows flexibility in distribution of secondary infections, but
does not account for depletion of susceptibles.

Important classes of stochastic epidemic models

Chain binomial

- Model of an epidemic in a finite population.

- For each generation of transmission, calculates new infected 
individuals as a binomial random draw from the remaining 
susceptibles.

Diffusion

- Model of an endemic disease in a large population.

- Number of infectious individuals does a random walk around its 
equilibrium value quasi-stationary distribution
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Continuous vs discrete time

Continuous-time models (ODEs, PDEs)

• Well suited for mathematical analysis

• Real events occur in continuous time

• Allow arbitrary flexibility in durations and residence times

Discrete-time models

• Data often recorded in discrete time intervals

• Can match natural timescale of system, e.g. generation 
time or length of a season  

• Easy to code (simple loop) and intuitive

• Note: can yield unexpected behaviour which may or may 
not be biologically relevant (e.g. chaos). 

)()1( tNtN λ=+

N
dt
dN λ=

Continuous vs discrete state variables

Continuous state variables arise naturally in differential 
equation models.

• Mathematically tractable, but biological interpretation is 
vague (sometimes called ‘density’ to avoid problem 
of fractional individuals).

• Ignoring discreteness of individuals can yield artefactual 
model results (e.g. the “atto-fox” problem).  

• Quasi-extinction threshold: assume that population goes 
extinct if continuous variable drops below a small value

Discrete state variables arise naturally in many stochastic 
models, which treat individuals (and individual 
outcomes) explicitly.

Models for population structure

Random mixing Multi-group Spatial mixing 

Network Individual-based model

Population heterogeneities

In real populations, almost everything is heterogeneous – no two 
individuals are completely alike.

Which heterogeneities are important for the question at hand?  
Do they affect epidemiological rates or mixing?  Can parameters 
be estimated to describe their effect?
• often modelled using multi-group models, but networks, IBMs, 

PDEs also useful.

SIR output: the epidemic curve
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SIR output: the epidemic curve

Basic model analyses  (Anderson & May 1991):
Exponential growth rate, r = (R0 − 1)/D
Peak prevalence, Imax = 1 − (1+ ln R0)/R0

Final proportion susceptible, f = exp(− R0[1−f]) ≈ exp(−R0)
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SIR output: stochastic effects
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Stochasticity risk of disease extinction when number of cases 
is small, even if R0>1.

6 stochastic epidemics 
with R0=3.

Probability of disease 
extinction following 

introduction of 1 case.

Cycle period T ≈ 2π (A D)1/2

where A = mean age of infection
D = disease generation interval

or can solve T in terms of SIR model parameters by linearization. 

SIR with host demographics: epidemic cycles
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Summary of simple epidemic patterns

• Absence of recovery: logistic epidemic

• No susceptible recruitment (birth or loss of immunity): simple epidemics

• Susceptible recruitment through birth (or loss of immunity): recurrent 
epidemics  

Herd immunity and epidemic cycling

The classic example: 
measles in London
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until S/N rises enough that Reff > 1.
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Grenfell et al. (2001)

Herd immunity and epidemic cycling

Cycle period depends on the effective birth rate.

Measles in London

Baby boom

Vaccine era

Measles again…

Note that measles dies out 
between major outbreaks in 
Iceland, but not in the UK or 
Denmark.

What determines 
persistence of an acute 
infection?

NB: Questions like this are 
where “atto-foxes” can 
cause problems.

Persistence and fadeouts

Denmark ~ 5M people

UK ~ 60M people

Iceland ~ 0.3M people

S

I

Intrinsic vs extrinsic forcing – what determines outbreak timing?  

Untangling the relative roles of 
intrinsic forcing (population dynamics and herd immunity) 

and 
extrinsic forcing (environmental factors and exogenous inputs)

is a central problem in population ecology.

This is particularly true for ‘outbreak’ phenomena such as 
infectious diseases or insect pests, where dramatic population 

events often prompt a search for environmental causes.
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Intrinsic vs extrinsic forcing – what determines outbreak timing?  

Extrinsic factors
Pathogen introduction: contact with reservoirs, invasive species, range shifts 
Climate: ENSO events, warming temperatures
Malnutrition: from climate, fisheries or increasing N
Pollution: immunosuppressive chemicals, toxic algae blooms
Human interactions:  Harvesting, protection, disturbance

Intrinsic factors
Host population size and structure, recruitment rates and herd immunity

Example: leptospirosis in California sea lions

Individual “clinical” data
• Latent period:  time from infection to transmissibility
• Infectious period:  duration (and intensity) of shedding 

infectious stages
• Immunity:  how effective, and for how long?

Population data
• Population size and structure
• Birth and death rates, survival, immigration and emigration
• Rates of contact within and between population groups

Epidemiological data
• Transmissibility (R0)

- density dependence, seasonality

Data needs I.  What’s needed to build a model?

Time series
• Incidence: number of new cases
• Prevalence: proportion of population with disease

Seroprevalence / sero-incidence: shows individuals’ history of 
exposure. 

Age/sex/spatial structure, if present.
e.g. mean age of infection can estimate R0

Cross-sectional data
Seroprevalence survey (or prevalence of chronic disease)

endemic disease at steady state insight into mixing
epidemic disease outbreak size, attack rate, and risk groups

Data needs II.  What’s needed to validate a model? 
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Morbidity & Mortality Weekly Report (2003)

Contact tracing

SARS transmission chain, Singapore 2003

Days

C
as

es

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 101112131415161718192021

Presumed double 
primaries

Presumed within-family 
transmission

Measles: 
Latent period 6-9 d, Infectious period 6-7 d, Average serial interval: 10.9 d

Observed time intervals between two cases of measles in families of two 
children. Data from Cirencester, England, 1946-1952 (Hope-Simpson 1952)

Household studies

Historical mortality records provide data: 
London Bills of mortality for a week of 1665 

Long-term time series

CDC Morbidity and Mortality 
Weekly Report

Today: several infections 
are ‘notifiable’

http://www.who.int/research/en/ Outbreak time series

• Journal articles

http://www.who.int/wer/en/
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http://www.cdc.gov/mmwr/
http://www.eurosurveillance.org

Grenfell & Anderson’s (1989) study of whooping cough

Age-incidence

e.g. Walsh (1983) of measles in urban vs rural settings in central Africa
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Rubella in Gambia Rubella in UK

mumps poliovirus

Hepatitis B virus Malaria

Age is in years

Age-seroprevalence curves

Seroprevalence: Proportion of population carrying antibodies 
indicating past exposure to pathogen.

Increased transmission leaves signatures in seroprevalence profiles

e.g. measles in small (grey) and large (black) families

http://www.dcp2.org/pubs/DCPhttp://www.dcp2.org/pubs/GBD

Two books full of data on important global health problems
- PDF versions free to download.
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Other fields of disease modelling

Within-host models

• pathogen population dynamics and immune response

Other fields of disease modelling

Pathogen evolution

• adaptation to new host species, or evolution of drug resistance

Other fields of disease modelling

Phylodynamics

• how epidemic dynamics interact with pathogen molecular evolution

Community dynamics of disease
Co-infections

What happens when multiple parasites are present in the same host?  

How do they interact?  Resource competition?  Immune-mediated 
indirect competition?  Facilitation via immune suppression

Multiple host species

Many pathogens infect multiple species

- when can we focus on one species?

- how can we estimate importance of multi-species effects?

Zoonotic pathogens – many infections of humans have animal 
reservoirs, e.g. flu, bovine TB, yellow fever, Rift valley fever

Reservoir and spillover species

Host jumps and pathogen emergence


