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Abstract 

 
Dimensionality reduction techniques are used for representing higher dimensional data by a more 
meaningful lower dimensional structure. In this paper we will study two such approaches, 
namely Carroll’s Parametric Mapping (to be abbreviated PARAMAP) (Shepard & Carroll, 1966) 
and a variation of ISOMAP (Tenenbaum, de Silva, & Langford, 2000). The former relies on 
iterative minimization of a cost function while the latter applies classical MDS after a 
preprocessing step involving the use of a shortest path algorithm to define approximate geodesic 
distances. We test the PARAMAP algorithm extensively on the 62 points on the surface of a 
sphere with varying error levels and degrees of irregularity of spacing as well as well as the 
Swiss roll data which was initially used to test ISOMAP. We also compare the results to 
ISOMAP produced embeddings of the sphere and the Swiss roll. We develop a measure of 
congruence between the input data and the mapped low dimensional embedding based on the 
preservation of the local structure, and compare the different approaches using this measure. This 
measure can also be used to test the statistical significance of an obtained configuration with the 
help of a randomization procedure we developed and applying simple probabilistic concepts 
(Chebyshev’s inequality). The PARAMAP approach turns out to be very superior compared to 
the ISOMAP approach in both kinds of data we tested the programs on. Especially in the case of 
the sphere, ISOMAP produces mappings resemble a projection of the points on the lower 
dimensional space, much like what the essentially linear classical MDS or PCA analysis would 
also do. PARAMAP on the other hand manages to preserve the local structure much better than 
ISOMAP does, even in the case of the Swiss roll data which was used in the original paper to 
show the effectiveness of ISOMAP (Tenenbaum et al., 2000). The difference in the mappings of 
the two algorithms is much more severe in the case of the sphere (which is a “closed” data set) as 
opposed to the Swiss roll (which is an “open” data set). This suggests that ISOMAP in its current 
state would have limited use in such “open” or “semi-closed” data sets. In “closed” data sets, 
however, PARAMAP seems to be the only option. However, PARAMAP has its shortcomings in 
the sense that it requires extensive computer run time. Computational improvements in 
PARAMAP are a must if it needs to be generalized to a much larger number of points (say 1,000 
or more). Also ISOMAP and PARAMAP both could benefit from a procedure that would 
judiciously select a subset of points to be analyzed and then, after analysis, extrapolate or 
interpolate the rest. Our current research direction, is to work on improving computational 
efficiency of PARAMAP and also come up with an efficient extrapolation or interpolation 
procedure. 
 

Introduction 
 
 A general problem in multivariate analysis is to determine a smaller set of variables 
necessary to account for a larger number of observed variables. Principal-components analysis 
(PCA) and multidimensional scaling (MDS) are two ways to deal with this problem. However, 
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they both fail to recover the true dimensionality unless the relationship between the observed 
variables and the smaller set of underlying variables is linear or near linear (Mardia, Kent, & 
Bibby, 1979). Alternative approaches are needed when this relationship is highly nonlinear.  
 Shepard and Carroll (1966) presented two such mapping approaches. One of the methods, 
proposed by Shepard, used locally monotone analysis of proximities. This method was 
essentially an application of nonmetric two-way multidimensional scaling  (MDS) analysis, in 
which only the small distances were used as input, with the large distances treated as “missing”, 
so that the distances in the mapping produced were only approximately locally monotonically 
related to the derived distances defined via the variables provided as input to the procedure. In a 
variation, metric MDS could be used, in which case the mapping tends to preserve a locally 
linear relation between data distances and recovered distances. A similar approach was also used 
by Buja and Swayne (2002) in a method they have called “within-groups MDS”. The other 
approach, proposed by Carroll, reduced the dimensionality by optimizing an index of 
“continuity” or “smoothness”. The former worked well if the nonlinearities were not too severe; 
in particular as long as the inverse mapping from the underlying “latent (lower dimensional) 
space” to the space defined by the observed variables does not comprise a closed (or near closed) 
curve (such as a circle) or surface (such as a sphere or hypersphere). The latter approach did not 
have such a restriction. The latter approach was also incorporated into a computer program 
called PARAMAP standing for “PARAmetric MAPping of nonlinear data structures” (Carroll & 
Chang, 1968; Carroll, 1968). Parametric mapping was intended to find a mapping of points on a 
nonlinear surface embedded in a high-dimensional vector space, whose topological 
dimensionality is smaller than that of the embedding space, to a lower-dimensional vector space, 
whose dimensionality equals that topological dimensionality, and which preserves that topology, 
with the possible exception of a single point (the point where the surface has to be “punctured” 
to effect the mapping) at which a severe discontinuity in the mapping will necessarily occur. (If 
the surface is not closed no such discontinuity would occur.) 

The PARAMAP computer program was tested on several data sets including 20 equally 
spaced points on a circle (where the topological dimensionality is one), 62 regularly spaced 
points on a sphere (where the topological dimensionality is two), and 49 points equally spaced on 
a very specially constructed four-dimensional torus (where the topological dimensionality is also 
two). The results were all successful for the errorless configurations described above.  The 
PARAMAP analysis of the 20 points on the circle in effect cut the circle between some pair of 
adjacent points, and then mapped the 20 points onto a line, with equal spacing on this line, and 
with the order of the points maintained except, of course, for the point at which the circle is “cut” 
(Figure 1 shows the plot of original coordinates y1 and y2 against the recovered coordinate x). In 
the case of the 62 points on the sphere, a mapping (Figure 2a) was obtained which resembled 
very closely one of the fairly standard cartographic mappings (one called an “azimuthal 
equidistant projection” such as that shown in Figure 2b) of the globe (Deetz & Adams, 1945). In 
the case of the azimuthal equidistant projection, the sphere is in fact “cut open” or “punctured” at 
an arbitrary point along the equatorial parallel, where the points are less densely distributed than 
at other points, resulting in a minimal distortion of distances almost everywhere on the resulting 
mapping. At the point on the equatorial parallel where this “puncture” occurs though, the 
distances are very severely distorted. In the case of the 49 equally spaced points on the highly 
regular torus embedded in four dimensions, the mapping produced an almost perfect two-
dimensional lattice as shown in Figure 3 (one of 49 equally likely lattices that could have 
resulted).  
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Figure1 
One-dimensional solution for 20 points equally spaced around a circle (line at bottom), with 
original coordinates plotted above [reproduced from Shepard, & Carroll (1966)]. 
 

 

(a) (b) 

Figure 2 
(a) The solution of the 62 regularly spaced and errorless points on the sphere, and (b) the 
azimuthal equidistant projection of the globe [(a) reproduced from Shepard and Carroll (1966) 
and (b) taken from http://mathworld.wolfram.com]. 
 

http://mathworld.wolfram.com/
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Figure 3 
Two-dimensional solution for the 49 points on the surface of a torus (with analogues of the 
original intersecting parallels drawn in). [Reproduced from Shepard & Carroll (1966)] 
 
 

Although results were successful, there was a severe local minimum problem. A large 
number of runs were needed to obtain a decent solution, while no documentation can be found as 
to the exact amount. This problem got more severe when error was added to the regularly spaced 
points, or when the spacing was made less regular (or both). The predicament of having to make 
many computer runs with less developed computing facilities stalled the development of the 
program at that time.  

Our current work was stimulated in part by the publication of two articles on the issue of 
nonlinear mapping (Tenenbaum, de Silva, & Langford, 2000; Roweis & Saul, 2000). The former 
paper describes an approach called ISOMAP (ISOmetric MAPping), which applies classical 
MDS after reconstructing a distance matrix that reflects the true geodesic distances rather than 
the straight line Euclidean distances. The latter works by means of a method called LLE (locally 
linear embedding) which is very similar to the locally monotone MDS approach proposed by 
Shepard as used in Shepard and Carroll (1966) explained above, and also appears to be closely 
related to a procedure experimented with by Kruskal (1975). Both these methods deal easily with 
some subset of data structures that we can refer to as “open” structures, but fail to recover the 
underlying configuration when the data structure is “closed” such as that of the regularly 
arranged points on a sphere. It turns out Carroll had tried a similar approach to ISOMAP using a 
different shortest path algorithm (Hu, 1967) but had abandoned the work because of 
unsatisfactory results, particularly in attempts to generalize this approach to work for the 
“closed” surfaces such as points on the sphere.  

Our work will focus primarily on evaluating the efficiency of the PARAMAP algorithm 
on the regularly and irregularly spaced points on the sphere with varying error levels. We will 
also test how ISOMAP works when such closed surfaces are used as input. In order to compare 
resulting configurations from different algorithms, we will develop a quantitative measure to 
assess how well local structure is preserved in the output configuration. Rotational indeterminacy 
tends to be a problem when the results from different runs need to be compared. In order to 
overcome this problem we will use standard software that performs ordinary least squares fit.  
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The paper will proceed as follows: In the next section we will review the important 
algorithmic properties of the two nonlinear mapping approaches ISOMAP and PARAMAP, and 
also give a cursory overview of some other approaches. Afterward, we will present our 
experimental procedures and explain the proposed measure for determining the congruence of 
the mapped solution to the input data. We will then present our results and conclusions. 

 
Nonlinear Mapping Algorithms 

 
We should first define the general terminology before we go on to describe the particular 

algorithms. We denote by: 
n : number of objects 
M : dimensionality of the input coordinates, i.e., the configuration for which we would like to 
find an underlying lower-dimensional embedding, which might also be referred to as the matrix 
of criterion variables, or as the criterion (multivariate) variable. 
R : dimensionality of the space of recovered configuration, where R<M 
Y : n × M input matrix 
X : n × R output matrix 
The distances between point i and point j in the input and output spaces respectively are 
calculated as: 
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∆ ≡ [ δij ], and D ≡ [ dij ]. 
 
Parametric Mapping Approach 
 
 Parametric mapping approach works via optimizing a function of “continuity” or 
“smoothness” that relates the Euclidean distances in the output configuration to the 
dissimilarities coming from the input configuration. The underlying idea is based on the 
assumption that a continuous function (possibly perturbed by error) relates the input variable to 
the “underlying latent variables” to be solved for or recovered as output variables (of lower 
dimensionality). The simplest case is illustrated by considering discrete values of a criterion 
variable denoted by yi corresponding to the ordered and equally spaced values of a predictor or 
input variable denoted by xi. In this case, we would say that y values change in a reasonably 
“continuous” or “smooth” manner as we move along x, if changes in y as we move from the 
previous value of x to the next are small compared to the changes in y that occur for larger 
changes in x. Such an index of “smoothness” or “continuity” was already defined in the context 
of time series data (von Neuman, Kent, Bellison, & Hart, 1941; von Neuman, 1941). This index 
is given as follows: 
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If indeed the x values are not equally spaced the numerator of the above equation can be 
modified such that the changes in y are normalized by dividing by the changes in x. In other 
words we can represent the numerator as: 
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The best approximations of ∆y and ∆x in the multidimensional case are the respective 
Euclidean distances. To generalize this measure to the multidimensional case one more 
modification is needed. When points are mostly irregularly spaced, it is necessary to look at all 
(i, j) pairs rather than just adjacent ones. So we should sum the term (∆y/∆x)2 not just for 
adjacent points, but for all pairs of points, since “adjacency” is not well defined for the 
multidimensional case. To place more weight on the ratios where ∆x is small we also need to 
multiply by a constant that is monotonically decreasing with the separation ∆x. Finally, a 
normalization factor is needed that will perform the job S2 did for the unidimensional case. By 
following this rationale, Shepard and Carroll reached the measure they called κ1: 
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 This index measures the “continuity” inversely. It needs to be minimized for a given 
input data configuration Y. The minimization can be achieved by using a steepest descent 
method starting with an arbitrary starting configuration for X. When programming the 
minimization procedure, there are certain changes made to this function. First (d2

ij + Ce2) is 
substituted for d2

ij wherever it appears in the equation. The variable e takes on values between 0 
and 1, and has an effect on the speed of the minimization algorithm. The constant C is equal to 2 
/ (n - 1) and makes the variable e2 directly interpretable as a proportion of variance. For a good 
starting configuration the value of e should be close to 0 say 0.05. For a bad starting 
configuration the value should be higher; say 0.95. As the minimization proceeds, the value of e 
should converge to a value close to 0. There are also two more constants that are multiplied by κ 
but do not affect the minimization: In the numerator the constant z, and in the denominator 
[2/n(n−1)]2. The latter is simply another normalizing constant while the former serves to make κ 
attain a lowest possible value of 1. The lowest possible value of the objective function is 
achieved if a perfect mapping has been obtained. The value of z therefore is the inverse of the 
value that κ would attain if, for all i and j, dij = δij (or more generally dij ∝ δij). The function to be 
minimized via the steepest descent method thus becomes: 
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 We implemented this algorithm in a computer program written in C++ and compiled 
under UNIX environment by GNU-GCC compiler (Version 2.95.3 of 2001). Since entrapment in 

                                                           
1 κ as defined here is a special case of a more general index defined in Shepard and Carroll (1966). The full 
rationale for this general measure, and the particular implementation we use here, is best explained in that earlier 
paper. One condition κ (and its generalizations) were all  required to satisfy, called “condition of similitude”, 
stipulated that the minimum possible value of κ (and generalizations) would occur when the recovered configuration 
was related to the input configuration via a similarity transformation for which Euclidean distances are either 
preserved or simply multiplied by a positive constant. 
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a local minimum is one of the biggest problems the program faces, we designed it such that it 
will run for a specified number of random starts specified by the user. In this case the program 
will save the best configuration and the κ value associated with this solution. The user will also 
specify the maximum number of iterations, starting value of the variable e, and the 
dimensionality R to be recovered. If number of random starts is given as 0, the program will 
expect a starting configuration to be supplied by the user. In order to save time the initial 
minimization procedure using random starting configurations stops each run within the session 
when the maximum number of iterations is reached, not when a strict convergence criterion has 
been met. Using the feature of supplying an initial configuration, the best solution obtained from 
running the program for a given number of random starts can be further fine-tuned, by permitting 
a much larger number of iterations. We found that this post-processing step results in superior 
configurations although not necessarily resulting in significantly reduced κ values.  
 
ISOMAP Approach 
 
 The basic idea behind ISOMAP2 (Tenenbaum et. al., 2000) is to overcome the difficulties 
of MDS by defining a new metric and substituting that for the Euclidean distance. We can see 
why the Euclidean metric is not a correct interpoint dissimilarity measure for some data 
structures in the example given in Figure 4 (Lee, Landasse, & Verleysen, 2002). The spiral is 
seemingly two-dimensional but the underlying dimensionality is one. If classical MDS is applied 
directly to the Euclidean distance matrix, what is most likely to happen is a projection of the 
points in different layers of the spiral onto each other. The spiral will not be “rolled out” but will 
be “compressed”. Therefore, unfolding the spiral into a straight line will not be possible. Another 
example could be seen as the distance one has to travel when visiting a city at exactly the 
opposite end of the globe – a good approximation to this would be Shanghai, PRC and Buenos 
Aires, Argentina. The distance will be approximately 20,000 km, about half the circumference of 
the earth, not 12,700 km, which is the Euclidean distance (the diameter of the earth). The 
ISOMAP algorithm thus aims at first predicting the best approximation of this so-called 
“geodesic” distance as it is shown in Figure 4c or as demonstrated by the global intercity 
distance example, before applying the classical MDS procedure due to Torgerson (1958).   

 
Figure 4 
(a) two points in a spiral, (b) the Euclidean distance between the same two points and (c) the 
curvilinear or geodesic distance (Lee et al. 2002). 
 
   To obtain the approximate geodesic distances, ISOMAP implements a neighborhood 
graph that links or connects the closer points, for which the Euclidean distances closely 
                                                           
2 ISOMAP is implemented in MATLAB and the MATLAB code, data sets and other supplementary material are 
available at the web site http://isomap.stanford.edu 
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approximate the geodesic ones, but does not connect the more distant points as measured by the 
Euclidean metric in the embedding space. Since only closer points are now linked by an arc, the 
more distant points can be reached from each other by traversing the network of nearby 
connected points. Taking as input matrix Y (configuration of n points in M dimensions) 
ISOMAP produces the output matrix X (configuration in R dimensions) taking the following 
steps: 

1. Randomly select l landmark points. This step is optional and reduces computational 
time radically if n is very large. However, if this optional step is taken the program does not 
interpolate or extrapolate the remaining points.  

2. Compute the n by n (assuming step one is skipped) input distance matrix ∆≡[δij]. Using 
a user supplied parameter k or ε, modify ∆ such that the distances that do not fall within either k 
nearest neighbors of point i or that are further away than the specified ε criteria are marked as 
infinity. That is the very distant points are disconnected, so that they will only be reached by 
following the shortest path involving nearby points. Let ∆G be the resulting matrix. 

3. Apply a shortest path procedure to ∆G. The program has two options for doing so. One 
is Floyd’s algorithm (Floyd, 1962) the other is Dijkstra’s algorithm (Dijkstra, 1959). The 
standard option is Floyd’s and proceeds as follows: For each k ranging from 1 to n we redefine 
δG(i,j) for each i and j=1,…,n (i<j) by min{δG(i,j), δG(i,k) + δG(k,j)}. Now ∆G contains the 
shortest path distances from point i to  j. 

4. Construct the R-dimensional embedding by applying classical MDS to the matrix of 
distances obtained after Step 3.  
 Carroll, had tried a similar approach, but using Hu’s (1967) shortest path algorithm. 
Indeed the three shortest path algorithms Floyd’s, Dijkstra’s, and Hu’s are very similar and all 
scale as O ( N3 ). However, Floyd’s is the fastest running algorithm unless sparsity in the graph 
structure is exploited. Empirical studies suggest Dijkstra’s algorithm runs on the average 1.6 
times slower than Floyd’s (Foster, 1995). This result is because Dijkstra’s algorithm keeps an 
adjacency matrix along with making the computations. Our own studies suggest Hu’s algorithm 
runs about 2.8 times slower than Floyd’s does. This is because a step very similar to Floyd’s 
algorithm is performed two times, one forward (meaning the indices i, j, and k are incremented 
from 1 to n) and one slightly more costly backward step (meaning the indices i, j, and k are 
decremented from n to 1). Hu also later came up with decomposition type algorithms that made 
use of sparsity in the graph (1968, 1969). The version of Dijkstra used in the ISOMAP program 
based on Kumar, Grama, Gupta, and Karypsis (1994) also makes use of sparsity and is advised 
when n is higher than 1,000. 

The strong aspect of this program compared to PARAMAP is its noniterative nature. 
Therefore run times even for very large matrices are reasonable. PARAMAP cannot match this 
aspect because of the severe local minima problem. However, our studies have also shown that  
ISOMAP produces reasonable results only in a special subset of nonlinear manifolds, i.e. those 
which are not closed such as an open box, open cylinder, or Swiss roll (as the authors call the 
data set they used, which is merely a three-dimensional generalization of the spiral in Figure 4). 
For closed data sets such as the sphere, torus or even a closed cylinder, ISOMAP will produce 
only a projection of the points in which many distant points are projected very close to or even 
on top of each other, since ISOMAP is not able to puncture and, so to speak, “pry open” the 
closed manifold (or sometimes to open the surface by even more complicated “cuts”; e.g., the 
kind of complex pair of cuts required to open the four-dimensional torus to form the regular 
lattice of 49 points, as illustrated in Figure 14 of Shepard & Carroll 1966). 
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Other Approaches 
 

There are several other well-known techniques that could be used for dimensionality 
reduction. We will describe a few of those without getting into detail.  

Nonmetric multidimensional scaling. This method is ordinarily intended for uncovering 
the underlying stimulus configuration when the available data are in the form of dissimilarity or 
similarity judgments that are ordinal in nature (Kruskal, 1964a; 1964b). However, if one 
computes the distances from the input configuration and treats them as dissimilarities, it can also 
be used to extract a lower-dimensional embedding. Nonmetric two-way MDS seeks to minimize 
the “badness of fit” function called STRESS (in one of two variants called STRESS1 and 
STRESS2; Kruskal & Carroll, 1969) that relates the distances calculated from the current 
configuration to the pseudo-distances derived via an OLS monotone regression function (labeled 
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It should also be noted that the use of nonmetric MDS with missing data is needed to implement 
the “locally monotone MDS” approach of Shepard’s (Shepard & Carroll, 1966). If some data are 
missing, or treated as missing, the summations indicated are all over non-missing values of i and 
j. (Where d  is defined by dividing the distances by the number of non-missing values.) 
 Sammon’s Mapping. Minimizes a mapping error function that relates the distances in the 
obtained configuration to the dissimilarities in the input configuration (Sammon, 1969). The only 
important difference between Sammon’s mapping and nonmetric MDS is the lack of a monotone 
regression function. But indeed they are so similar, Kruskal (1971) indicated that the proper 
options used with MDSCAL 5M (early nonmetric MDS software) would give exactly the same 
results3.  The same is true of the later KYST family of algorithms (Kruskal, Young, & Seery, 
1977). A comparison made among several mapping algorithms found that the two mapping 
algorithms produced about equally effective results based on a criterion of mapping performance 
(De Backer, Naud, & Scheunders, 1998). The function minimized by Sammon’s mapping is 
given below. 
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 Others. Multidimensional scaling by iterative majorization using radial basis functions 
has been proposed by Webb (1995). He indeed applied his algorithm to 500 points uniformly 
distributed over a part sphere with added noise. The “part” sphere’s surface covered the lower 
hemisphere and the upper hemisphere up to a latitude of 45 degrees. The resulting plot is given 
in Figure 5. This shows the sphere barely “opened out” as we can see. There is no indication as 
                                                           
3 Kruskal’s (1971) argument involved using a weighted variant of the STRESS1 Function, with weights defined in a 
particular way as an inverse function of the input data. 
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to how the algorithm would act had the sphere been closed, but we suspect strongly that it would 
not have preserved the topology, but would have effectively projected some distinct points on 
top of each other. Another algorithm is the CDA (Curvilinear Distance Analysis) approach by 
Lee et al. (2002), which is indeed a variation of ISOMAP. Other well known approaches include 
Self-organizing Map (SOM) (Kohonen 1990, 1995) and Auto-associative Feedforward Neural 
Networks (AFN) (Baldi & Hornik, 1989; Kramer, 1991). According to De Backer et al. (1998) 
SOM and AFN result in more successful mappings (when compared to nonmetric MDS and 
Sammon’s mapping based on a measure of classification performance involving k-nearest 
neighbors classification rate) but are computationally more expensive. Specifically AFN might 
take 10 to 100 times more computing time than nonmetric MDS depending on the data set being 
used. SOM may occasionally run faster than MDS; however SOM can run much slower with 
higher m, a dependence that nonmetric MDS does not have (de Backer et al., 1998).  

 
Figure 5 
Projection of a ¾ sphere by iterative majorization using radial basis functions. The contours 
represent lines of latitude from Iπ/10, I=-4, -3, -2, -1, 0, 1. The outer solid line is a projection of 
the points in the equator while the outermost dashed line is a projection of the parallel where the 
sphere has been cut off (Webb, 1995). 
 

Experimental Design and Methods 
 
 In our study to date our primary focus has been the sphere with 62 points. The base level 
errorless sphere has 62 points in three-dimensional Cartesian space located at the intersections of 
5 equally spaced parallels and 12 equally spaced meridians. We generated the coordinates as 
follows: 
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To generate the 60 points other than the two poles, we cross the following five values of θ  (all in 
degrees) defining the five equally spaced parallels:  
-60, -30, 0, 30, 60   
with the following 12 values of φ  (all in degrees) defining the 12 equally spaced meridia: 
-150, -120, -90, -60, -30, 0, 30, 60, 90, 120, 150, 180 
(Note: φ  = 180° is equivalent to φ  = -180°), 
to obtain the 5 × 12 = 60 points excluding the two poles. 
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Finally the two poles are given by the coordinates: 
x = 0, y = 0, z = -1 
x = 0, y = 0, z = 1 
which are labeled points 1 and 62 respectively. The rest of the points are numbered in a similar 
way between 2 and 61. For example 2 is the point that corresponds to θ = -60 and φ = -150. 
Numbering the points this way enables us to interpret the resulting two-dimensional 
configurations much more clearly way. A plot of the sphere (or, more precisely, of the 
polyhedron embedded in the sphere whose vertices comprise the 62 points with which we deal) 
in three dimensions can be seen in Figure 6. 

 
Figure 6 
The sphere with 62 regularly spaced points. 
 
Error Levels 
 
 To test PARAMAP under more realistic circumstances, we also decided to add various 
levels and types of error to the regular data. First we assign three levels of what we call Type A 
error defined as follows, to the x, y, and z coordinates of point i: 
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where sx , sy , sz  are the standard deviations of the coordinates respectively, pj is a factor that 
determines the error expressed as a percentage of the variance for error level j, α(vi) ∼ i.i.d. 
N(0,1) where vi =xi, yi, and zi. We use the following three levels of Type A error: 
p1 = 0.00 
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p2 = 0.10 
p3 = 0.20 
 After this error is added the points will generally go off (inside or outside) the surface of 
the sphere in an uncontrolled manner. We believe it is best to separate the effect (a) of the points 
being irregularly spaced from (b) their being on or off the surface of the sphere. We therefore 
make sure that every point is still on the sphere’s surface by applying the following equations: 
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Then we add to the resulting coordinates (all defining points on the surface of the sphere) 
what we have designated as Type B error. Type B error lets the points go inside or outside the 
sphere in amounts that we can control. The movement from the surface of the sphere would 
otherwise be totally uncontrolled had the previous step not been taken. We have designated 5 
levels of Type B error: ± lj where lj = 0.20, 0.10, 0.05, 0.01, and 0.00 for j = 1 … 5 (the last error 
level, l5 , of course corresponds to points being confined to the surface of the sphere; combined 
with level 1 of Type A error we have the errorless regularly spaced sphere). The error is added as 
in the following formulae: 

iijji

iijji

iijji

zzllz

yylly

xxllx

′′⋅⋅+−=′′′

′′⋅⋅+−=′′′

′′⋅⋅+−=′′′

))(2)1((

))(2)1((

))(2)1((

β

β

β

 

Here β ( vi ) ∼ i.i.d U[0,1], where U[0,1] is the uniform distribution in the interval [0,1]. The 
variable lj is the Type B error level ranging from 0.00 to 0.20. 
 
Evaluation of Mapping Performance 
 
 Although PARAMAP reports the κ value at the end of the analysis, and lower values 
mean better results with an absolute minimum known to be at 1.0, since there is no distribution 
theory for κ values (conditioned on input data, dimensionality of solution, etc.) we still needed 
another metric to be able to compare different solutions or even different computer programs 
(such as ISOMAP) which are based on entirely different principles. For this purpose we 
developed a metric based on the k-NN (k-nearest neighbors) approach. De Backer et al. (1998) 
used a slightly different measure in their comparisons between mapping algorithms and named 
their metric “classification rate”. We will call our metric “rate of agreement in local structure” 
abbreviated as “agreement rate” or “A”. The index we developed is pretty similar to the RAND 
index (Rand, 1971; Hubert & Arabie, 1985). However the RAND index is used to compare two 
methods of partitioning, based on the number of objects placed in common classes of the 
respective partitions. K-nearest neighbors can also be regarded as a clustering scheme, but there 
will be many overlapping clusters and thus the resulting clusters will not be partitions. Because 
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of this we cannot readily use the RAND index. The calculation of the agreement rate goes as 
follows: 
 1. For every point i find the k-nearest neighbors, both for the input matrix Y and the 
output matrix X. There will be two k × n matrices (neighborhood matrices) that need to be 
computed for this purpose. The columns will contain the indices of the k closest neighboring 
points corresponding to column number j. More formally, if we call this matrix P, pij will contain 
the index of the ith closest point to point j.   
 2. Let ai stand for the number of points that are in the k-nearest neighbor list for point i in 
both X and Y.  

 3. The agreement rate will be equal to kna
n

i
i

=1
∑  = A . 

  Also after giving this rate we have programmed the routine to randomize the points in 
the output configuration a given number of times (we initially set this number at 1000) and 
calculate the same index for each of the randomized configurations with the input configuration 
fixed. We compute the mean, maximum, and minimum of the agreement rates resulting from 
randomized configurations of the solution, while also tabulating the empirical distribution of this 
value. This will provide an estimate of the empirical distribution of the agreement rate for a 
given Y and randomized configurations, constraining the distribution of points, and therefore of 
distances, in those configurations to be the same as those for X. 
 Another option this routine accomplishes is to produce a plot of δij vs. dij but only for 
those i and j that are contained in the neighborhood matrix of the output space. This plot is 
analogous to a Shepard diagram (without monotone regression being used to estimate pseudo-
distances) but only for “local” pairs of points as defined via the output configuration. This 
“Shepard-like” diagram, as we call it, will provide a graphical indication of the smoothness of 
the relationship between the input distances and the distances derived from the output 
configuration by showing how close this mapping is to being locally linear or locally monotone. 
The Shepard-like diagrams for two cases of Paramap mappings of the sphere (the “best” case and 
the “worst case” in the sense to be defined) can be seen in Figure 9. We also show such a 
diagram for what we regard as the best mapping configuration of the regularly spaced errorless 
sphere by ISOMAP. 
 
Problem of Similarity Transformations 
 

One aspect of this overall approach that should be mentioned is that, PARAMAP (and 
ISOMAP or ISOMAP-like approaches), like other MDS approaches based on the Euclidean 
metric, determines solutions only up to a similarity transform. In particular, even though the 
translation of origin and overall scale factor problem can easily be solved for via normalizing 
conventions, there remains a very severe and important problem of orthogonal rotation of the 
obtained structures. This problem often makes it very difficult to determine whether the solutions 
actually obtained are comparable to those one expects to obtain, especially if the representation 
is in two or more dimensions. We have solved this problem by using some standard approaches 
for orthogonal rotation of such configurations to optimal congruence with one landmark solution 
that we obtain, such as the configuration of the two-dimensional solution to the errorless and 
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regularly spaced points on the sphere as given in Figure 7 (Rohlf & Slice 1989; Slice 1994)4.  
After such rotation, we find the solutions obtained using the irregularly spaced “noisy” (or 
errorful) data are remarkably similar to those for the regularly spaced and error-free 
configurations with which we began. We also report for each of the rotated configurations a VAF 
(variance accounted for) measure which is calculated as follows: 

∑∑

∑∑

= =

= =

−
−= R

r

n

i
ir

R

r

n

i
irir

x

xx
VAF

1 1

2

1 1

2

)(

)ˆ(
1 , 

where  belong the configuration obtained via a similarity transformation of any of the 
solutions for the varying error levels and irregularity of spacing and  belong to the landmark 
configuration, i.e., the solution to the errorless and regularly spaced sphere. There is a caveat, 
however, about these VAF values. Because of the nature of the PARAMAP algorithm, two 
different solutions can look exactly the same, though the placement of points will be arbitrary on 
either of the five parallels, depending on where the sphere has been cut. Thus, although visual 
inspection reveals the solutions are very much like one another, the VAF values of one might 
turn out to be lower. The effect of the similarity transformation can be most readily seen by 
observing the south and north poles (namely points 1 and 62) and observing that the lower 
numbered points are around point 1 and the higher numbered points are near point 62. To correct 
for the problem of arbitrary placement of points on the five parallels, we need to supplement the 
optimal similarity transformation found by Rohlf and Slice (1989) algorithm with another step in 
which the points on each parallel of the transformed configuration are reordered (but constrained 
to be a cyclical permutation of the order corresponding to the order for each parallel in the target 
configuration of the regularly spaced errorless sphere), and alternate this step and the 
transformation step until convergence occurs. This alternating procedure has not yet been 
implemented, but we plan to do so in the very near future. 

irx̂

irx

 
Results 

 
 The results were generally very good. The plot of the output configuration of the analysis 
done on the perfect sphere is given in Figure 7. As can be seen after comparing this solution to 
Figure 2b, this solution is very reminiscent of the azimuthal equidistant projection of the earth. 
This particular solution has a κ value of 1.137 and has an agreement rate of 82.9% with k = 5. 
For this particular k, randomizations of X have shown that the average agreement rate is only 
8.1% while the minimum and maximum rates are respectively 3.5% and 16.7%.  The standard 
deviation of the agreement rates obtained from the randomization procedure is respectively 
1.9%. We can use Chebychev’s inequality to determine an upper bound on the probability of 
obtaining a rate of 82.9% simply by chance. If we consider Z to be the random variable 
representing the distribution of the agreement rate, and σ to be the estimate of the standard 

                                                           
4 The program we use is called GRF-ND. We use the option of ordinary least-squares (or also called ordinary 
procrustes) superimposition. This method fits several specimens to a given reference configuration. The 
superimposition parameters are chosen to minimize the sum of squared distances between points on each 
configuration and the corresponding points on the reference specimen. The documentation (Slice, 1994) and the 
program are available online from http://life.bio.sunysb.edu/morph/soft-super.html.  
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deviation of the distribution, Chebychev’s inequality puts an upper bound on the probability that 
Z can be above the mean µ by some multiple k of σ as in the below equation: 

2

1)(
k

kZP ≤≥− σµ  

For our case 82.9% is above the mean by about 40 standard deviations (39.88 to be exact without 
rounding in the calculations). Using the above formula, the upper bound probability can be 
calculated as roughly 1/402 or 0.000625. So the rate of 82.9% is very difficult to achieve by 
chance alone and can be stated as being very statistically significantly different from that for a 
random configuration with the same distribution of distances (dij’s) at a p value << .001. The 
results are similar also for the other error levels and differing irregularities of spacing. 
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0.2

0.25

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

 
Figure 7 
The plot of the solution obtained by running PARAMAP on the 62 points on the sphere. The 
kappa value for this solution is 1.137. Contours represent the 5 equally spaced parallels. 
 

The κ values and the agreement rates of the 15 different error combinations are given in 
Tables 1 and 2. Tables 3, 4, and 5 provide the minimum, maximum and the average values of 
agreement rates for the 1000 randomizations of each solution. It is clear from these tables that 
the obtained agreement rates are much larger than that which could be obtained by chance alone. 
The plots of all the PARAMAP recovered configurations for the 15 cases are also given in 
Figures 8a through 8o. For each plot also a measure of congruence (VAF, as explained in the 
preceding section) of the configuration with the reference configuration (configuration 1 or the 
two-dimensional solution for the errorless regularly spaced sphere) is provided (but, we remind 
the reader without the required reordering of the points on the different parallels of the 
transformed solution). To observe the smoothness of the relationship between the original 
distances and those obtained by PARAMAP, we present the modified Shepard diagrams given in 
Figure 9a and 9b for the two extreme cases, respectively, the errorless and regularly spaced 
sphere and the sphere with the maximum amount of error and the maximum amount of 
irregularity. Also in Figure 9c we provide the equivalent diagram for the ISOMAP solution to the 
errorless and regularly spaced sphere, which clearly shows a random distribution of points, 
unlike the previous two plots. The PARAMAP program was run from 100 different random 
starts for 200 iterations and then the best solution was further processed for 1000 more iterations 
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for each of these 15 combinations. Although better solutions for each are probable, they would 
very likely not differ materially from the results we obtained.  
 
Table 1 
The κ values for the 15 experimental configurations of the sphere with 62 points  
 

  Type A Error 
Levels 

 

Type B Error 
Levels (±) 0% 10% 20% 

0.00 1.137 1.103 1.059 
0.01 1.144 1.096 1.046 
0.05 1.139 1.109 1.073 
0.10 1.128 1.096 1.080 
0.20 1.152 1.130 1.121 

 
Table 2 
The agreement rate for the 15 experimental configurations of the sphere with 62 points, all given 
as percentages (k = 5) 
 

  Type A Error 
Levels 

 

Type B Error 
Levels (±) 0% 10% 20% 

0.00 82.9 79.7 83.5 
0.01 78.4 83.2 83.2 
0.05 80.0 79.0 88.1 
0.10 83.2 82.9 83.0 
0.20 80.6 81.0 83.9 

 
Table 3 
The minimum of the agreement rate for the 15 experimental configurations of the sphere with 62 
points obtained over 1000 randomized configurations of the output matrix, all given as 
percentages (k = 5) 
 

  Type A Error 
Levels 

 

Type B Error 
Levels (±) 0% 10% 20% 

0.00 3.5 2.6 2.9 
0.01 2.3 2.6 3.2 
0.05 2.9 2.6 3.2 
0.10 2.9 2.6 2.9 
0.20 2.6 3.5 2.9 
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Table 4 
The average of the agreement rate for the 15 experimental configurations of the sphere with 62 
points obtained over 1000 randomized configurations of the output matrix, all given as 
percentages (k = 5) 
 

  Type A Error 
Levels 

 

Type B Error 
Levels (±) 0% 10% 20% 

0.00 8.1 8.1 8.1 
0.01 8.2 8.2 8.1 
0.05 8.2 8.1 8.2 
0.10 8.2 8.1 8.1 
0.20 8.1 8.2 8.1 

 
Table 5 
The maximum of the agreement rate for the 15 experimental configurations of the sphere with 62 
points obtained over 1000 randomized configurations of the output matrix, all given as 
percentages (k = 5) 
 

  Type A Error 
Levels 

 

Type B Error 
Levels (±) 0% 10% 20% 

0.00 16.7 14.5 15.2 
0.01 14.2 16.5 15.5 
0.05 13.9 15.5 14.2 
0.10 14.2 14.2 15.2 
0.20 14.5 15.8 15.5 
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Figure 8 
(a) 0% type A error / 0.00 type B error, (b) 0% type A error / 0.01 type B error VAF=0.47, (c) 
0% type A error / 0.05 type B error VAF=0.42, (d) 0% type A error / 0.10 type B error 
VAF=0.63. 
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Figure 8 - continued 
(e) 0% type A error / 0.20 type B error VAF=0.23, (f) 10% type A error / 0.00 type B error 
VAF=0.61, (g) 10% type A error / 0.01 type B error VAF=0.33, (h) 10% type A error / 0.05 type 
B error VAF=0.62. 
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Figure 8 - continued 
(i) 10% type A error / 0.10 type B error VAF=0.49, (j) 10% type A error / 0.20 type B error 
VAF=0.27, (k) 20% type A error / 0.00 type B error VAF=0.37, (l) 20% type A error / 0.01 type 
B error VAF=0.42. 
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Figure 8 - continued 
(m) 20% type A error / 0.05 type B error VAF=0.34, (n) 20% type A error / 0.10 type B error 
VAF=0.37, (o) 20% type A error / 0.20 type B error VAF=0.36. 
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Figure 9 
Shepard-like diagrams of PARAMAP solutions to (a) the errorless and regularly spaced sphere 
(i.e. minimum error), (b) the sphere with 20% type A and ±0.20 Type B error (i.e. maximum 
error), (c)The Shepard-like diagram of the ISOMAP solution to the sphere with 62 regularly 
spaced and error free points  In all three cases the pairs of indices involved are those i and j that 
are contained in the k nearest neighborhood matrix of the output space configuration (k=5). 
 
 We also tested ISOMAP on the regular sphere with no error using the “ε” option and 
specifying the value of “ε” as 0.550. The reason we used 0.550 is that it is the smallest value 
making sure that the resulting graph will be connected. Using “ε” as 2.0, the maximum distance 
in the data, will of course make it equivalent to metric MDS. It is possible to vary the value 
between the bounds. The results from ISOMAP for the sphere with 62 points are not satisfactory 
compared to the PARAMAP output. First and foremost, they are merely a projection of the 
sphere onto the two-dimensional plane. Apart from visually resembling looking through a 
transparent sphere with the points located as dots on the surface (which is contrary to what the 
program aims to do, namely identify the true geodesic paths between the points), the agreement 
rates are also lower (the ISOMAP produced plot is given in Figure 10 with the neighborhood 
graph drawn in). The agreement rate for the solution shown in Figure 10 is 48.1%. This number 
makes intuitive sense, since the projection will enforce half the points in the proximity of a point 
coming from the opposite side of the sphere. It should also be noted that the working of 
ISOMAP relies on a wise selection of both the k and the ε criteria. The worst case, if the values 
are not carefully selected, is that the graph will be disconnected and ISOMAP will only produce 
an embedding for those points it can connect. Another problem is that very degenerate solutions 
can also be obtained for some values, such as a line or several intersecting lines.  
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Figure 10 
The ISOMAP solution of mapping the 62 points on the sphere with ε = 0.550. 
 

For the Swiss roll data set, on which Tenenbaum et al. (2000) based most of their 
research on, we also tried a comparison of both approaches. In this case, however, we took a 
subset of 130 points from the Swiss roll data set that contains 20,000 points. The PARAMAP 
and ISOMAP mappings are shown in Figures 11(a) and (b), respectively. The agreement rate for 
the PARAMAP solution is 70.5%, while that rate for the ISOMAP solution is 59.7%. The 
agreement rate for ISOMAP has improved over the same results with the sphere, suggesting that 
something more than a projection has taken place; however the PARAMAP result is still better. 
The map also reveals a property of ISOMAP that tends to be a problem when a smaller number 
of points is used, namely that the mapping leaves large unfilled gaps while PARAMAP mapping 
produces a much more homogeneous plot. 

In run time it takes about 5 minutes for PARAMAP to complete 100 random starts each 
with 200 iterations for the 62 points on the sphere. This number reaches 20 minutes for the 130 
points on the Swiss roll, suggesting naturally that the computation time scales with the number of 
objects squared, namely n2. It must be noted, though, that dimensionality can also play a role, so 
the actual scale may very likely involve a factor involving R. The run time of ISOMAP in both 
cases is less than a minute.  
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Figure 11 
The (a)ISOMAP and (b)PARAMAP solutions to the 130 points on the Swiss roll. 
 
  

Discussion and Future Direction 
 
 One critical feature of PARAMAP that needs to be worked on is its inability to converge 
to a globally optimal solution in reasonable time. One compromise is to settle for a smaller 
number of random starts and use a substandard local minimum solution. However, we believe 
the convergence rate can be enhanced by modifying the steepest descent method used. Indeed, 
we tried a version of the conjugate gradient method (Fletcher & Reeves, 1964) with the quadratic 
line search technique (Bertsekas, 1999; Fletcher, 1987). Unfortunately, the cost of the line search 
was much too expensive and the program was running even slower than the steepest descent 
version. One possible remedy to the cost of line search is using a combination of both 
approaches, such as the conjugate gradient method with restarts (Powell, 1977). In this approach 
a steepest descent iteration is performed every n iterations or whenever a certain criterion is met. 
Another approach might be performing steepest descent iterations until a point is reached where 
the function can be better approximated by a quadratic function, then reverting to the conjugate 
gradient method. In any case finding the right optimization procedure requires extensive 
experimentation as the parameters to be used in each method need to be calibrated. If faster 
convergence is possible, the global optimum can be attained much more quickly and reliably, 
with more random starts being permitted for the same computational time.  
 Another feature to be improved and that is also a drawback of ISOMAP is the lack of a 
technique that judiciously selects landmarks (rather than randomly selecting them) and after 
performing the analysis interpolates or extrapolates the remaining points. Decreasing the number 
of points which will be used as input to the optimization algorithm will result in allowing very 
large data sets to be analyzed by either of the algorithms.  
 We believe that after some modifications the PARAMAP algorithm will be a very useful 
tool in dimensionality reduction, especially when the nonlinearity of the data set in question is 
very high. ISOMAP can also be useful, but in the limited context of certain kinds of data sets that 
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are not “closed” or nearly so. Combining features of both approaches could result in even more 
effective and efficient algorithms for nonlinear mapping. Both methods could be modified along 
lines explained above and better procedures can be devised as a result of this research. 
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