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Abstract—Nuclear attacks are among the most devastating
terrorist attacks, with severe losses of human lives as well as
damage to infrastructure. It becomes increasingly vital to have
sophisticated nuclear surveillance and detection systems deployed
in major cities in the U.S. to deter such threats. In this paper,
we outline a robust system of a mobile sensor network and
develop statistical algorithms and models to provide consistent
and pervasive surveillance of nuclear materials in major cities.
Specifically, the network consists of a large number of vehicles,
such as taxicabs and police cars, on which nuclear sensors and
Global Position System (GPS) tracking devices are installed.
Real time readings of the sensors are processed at a central
surveillance center, where mathematical and statistical analyses
are performed. We use simulations to evaluate the effectiveness
and detection power of such a network.

I. INTRODUCTION
Threats to national and homeland security have become

more dynamic and complex in the past decade due to global
terrorism, increased opposition to U.S. interests, greater pur-
suit of nuclear power and expanded access by adversaries
to sophisticated technologies and materials. Among all the
threats, nuclear attacks are arguably the most devastating.
They can cause severe losses and casualties in human lives
as well as long term and large scale damage to infrastructure.
As the result, there have been growing concerns regarding
the prospect of transporting, storing and detonating nuclear
materials or dirty bombs in the populous metropolitan areas.
Thus it becomes increasingly vital to have sophisticated nu-
clear detection systems deployed in major cities. Proactive
monitoring and detection via pervasive surveillance is crucial
to detect and thwart the malicious attacks.

We propose in this paper a massive surveillance network of
mobile sensors that are installed in vehicles such as taxicabs,
buses, and police cars. In such a network, when vehicles
with sensors move within a certain range of a nuclear source,
the radiation energy from the source will trigger the sensor
devices to send out wireless signals to a central command
center along with the positions of the sensors. With the random
movement and extensive coverage nature of the vehicles, this
setup provides a constant surveillance of nuclear materials. In
this massive network, the mobile sensors do not need to be
of high accuracy, since the failure of a small portion of them
will not significantly affect the effectiveness of the surveillance
coverage due to sensors’ random movements. Mounted on
vehicles, the sensors have fewer size constraints and power
consumption requirements. We use less sophisticated sensors
which only report binary signals instead of the actual read-
ings of radiation intensity in this study. A positive signal is

generated when the intensity from nuclear sources exceeds a
certain threshold. Due to the mobility of the sensors, regular
inspection, maintenance and calibration can be conducted
at a central location, thus further reducing the cost. More
importantly, it is almost impossible to tamper with such a
network of devices.

A mobile sensor network is often supplemented by sta-
tionary sensors. In fact, in most cases such a supplement is
necessary to cover locations with sparse or zero traffic, such as
a large park in the city. Our algorithm can be directly applied to
such a combination since the stationary sensors may be viewed
as the vehicles that are not moving in our models. While our
algorithm can be easily adapted to other similar networks, we
will work with the following typical mobile sensor network
designs.

• Nuclear sensors and Global Position System (GPS) track-
ing devices are installed on a large number of vehicles
such as taxicabs, police vehicles, fire trucks, and buses.

• The sensors and GPS devices constantly send detection
and location information to a central surveillance center.
Real time tracking signals are marked onto a map of a
metropolitan area under surveillance.

• Real time analysis is done at the surveillance center using
sophisticated statistical algorithms for the detection of
existence and potential locations of nuclear sources.

Based on our preliminary investigations of current sensor
technology, it is feasible to manufacture portable nuclear
sensors with high accuracy. For instance, the leading manu-
facturers such as Thermo Scientific and ICX Technology have
produced portable nuclear sensors with long range (more than
300 feet) detection capabilities. Currently these sensors are still
too expensive for a large scale deployment. However, with the
rapid advancement in technologies, low-cost sensors with a
medium range and a reasonable accuracy should be available
in the near future.

Due to many attractive characteristics of sensor networks,
there have been many studies and applications of the sensor
networks in military and civil applications including surveil-
lance, smart homes, remote environment monitoring. See [1]
and [2] for a recent survey. Much of the research devotes to
sensor placement, sensor reorganization and communications.
In the area of radiation detection, the idea of using massive
mobile sensors has been adopted and tested by the Radiation
Laboratory at Purdue University [3]. They use a network of
cell phones with GPS capabilities to detect and track radiation.



The noise and false positive detection problems are tackled
by setting and tuning the solid state devices. A multi-sensor
nuclear threat detection problem was studied in [4] using a
combinatorial network flow algorithm.

In this paper, we propose a mobile sensor network following
the aforementioned design and use statistical algorithms to
analyze the network. Since the sensor signals are not 100%
accurate, there are always false alarms or missed detections.
For example, a sensor might display positive readings when
there is no such signal, or fail to detect a real signal nearby.
From the viewpoint of statistical modeling, the occurrence of
missed detections can be treated as random. Statistical method-
ologies are effective tools for detecting true signals against
random errors. We consider probabilistic models for sensor
reading and source detection. These models are generalized to
include multiple sources with different aggregation rules. In
our work so far, we do not have a specific model of vehicle
movement, which will be a future research topic. We assume
that vehicles randomly roam within the monitoring region at
each time instance. If there are many vehicles with sufficiently
random movements, this is a reasonable first approximation.
Since we do not model the vehicle movement, our approach
is robust against model misidentifications, although it may
compromise some detection power compared to other methods
with an accurate model of vehicle movement.

Our algorithm in this study is based on recently developed
statistical methods for detecting multiple spatial clusters [5] [6]
[7] [8]. In particular, our simulation studies use an algorithm
from the latent modeling approach proposed by [7] [8], which
mimics the process of typical sample data generation. The
method introduces a latent modeling structure and uses formal
likelihood inference to detect multiple clusters simultaneously
in an entire region or time window. It can filter out known
and harmless sources efficiently and is suitable to analyze the
signals from our mobile sensor framework.

As mentioned before, the proposed mobile sensor network
typically consists of a large number of sensors. The detec-
tion capability of the system depends on the size of the
network, as well as other parameters. Our discussions with
law enforcement agencies reveal some reluctance to rely on
the private sector (e.g., taxicabs) in surveillance. However,
are there enough police cars to get sufficient "coverage" in
a region? How many vehicles are needed for "sufficient"
coverage? How does the answer depend upon the range of
the detectors, and the false positive and false negative rates of
detectors? These are some of the questions that we investigate
in the paper.

The rest of the paper is arranged as follows. Section II-A
discusses the nuclear intensity and sensor reading models. Sec-
tion II-B covers the detection model. Section II-C reviews and
outlines developments of statistical methodologies to detecting
multiple spatial clusters. Section 3 describes simulation studies
on several practical scenarios and estimates detection powers
of the network with different sets of parameters. Section
4 concludes the paper with discussions and future research
directions.

II. MODELS AND METHODOLOGY

A. Nuclear Intensity and Sensor Reading Models

We consider a nuclear source in this paper as a small
portable nuclear device transported by an individual via trucks
or bags [9]. As the nuclear radiation starts from a source, the
total energy stays as a constant due to the Conservation Law
of Energy. For simplicity, we assume that radiation travels in
spherical waves. Let z(r) denote the intensity at distance r.
The total energy remaining a constant for all r is 4πr2z(r),
where 4πr2 is the surface area of the sphere with radius r.
As the radius increases by a factor of k, the surface area
of the sphere will increase by a factor of k2. As a result,
the radiation intensity z decreases by the inverse square of
the distance r [10]: z(r) = c/r2, where the constant c is
a factor related to the total energy of the source. Since the
nuclear detection device is triggered by radiation intensity,
getting closer to the nuclear source will better the chance for
detection. The ubiquitous nature of the mobile sensor network
takes advantage of this property.

As previously mentioned, we assume that the sensors report
binary signals. Let S denote the status of the sensor’s reading
with the value of 1 for a positive reading and 0 otherwise. We
describe S with a threshold model:

S = 1{z(r)≥d} = 1{c/r2≥d} (1)

where d is a threshold for detection and 1{.} is the indicator
function. That is, if the intensity z(r) at the sensor location is
greater than the threshold d, the sensor will detect the source;
otherwise the sensor reports a negative reading.

In practice there might be multiple nuclear sources, whose
energy levels and positions will jointly determine the reading
status of a sensor. In this paper, we assume that nuclear
energies from difference sources are additive. For example,
they are all within same spectrum of frequencies. Let Ω
be the number of sources, cω be energy factor of the ωth
source, rω be the distance from the sensor to this source. The
aggregation of intensities from all sources at the senor location
is: ztotal =

∑Ω
ω=1 cω/r2

ω. From the threshold model (1), the
reading S can be determined by:

S = 1{ztotal≥d} = 1{∑Ω
ω=1 cω/r2

ω≥d} (2)

B. Nuclear Detection Model

As with any detection device, nuclear sensors are not
necessarily 100% accurate. The inaccuracy may stem from
the variability in the manufacturing process, routine wear
and tear, missing scheduled maintenance and calibrations, and
undetected malfunctions. In addition, random traces of weak
environmental nuclear signals can also trigger false alerts. For
example, a person who just went through a radioactive therapy
or a bag of cat litter can trigger positive alarms. We regard such
sources as trivial sources as they are weak and last a very
short period of time. Furthermore the wireless signals from
the mobile sensor to the control center may incur transmission
errors.



We use the two parameters sensitivity and specificity to as-
sess the average performance of a sensor device. In the context
of nuclear detection, sensitivity, denoted as η, presents the
probability of detecting nuclear sources where there are indeed
such materials. Specificity, denoted as ζ, is the probability
of not detecting any nuclear materials where there in fact
do not exist any. Let D be the binary indicator of a sensor
detecting a true nuclear source, D equal to 1 for the positive
detection and 0 otherwise. We have η = P(D = 1|S = 1)
and ζ = P(D = 0|S = 0).

The quality control characteristics of a sensor, false negative
rate (FNR) and false positive rate (FPR), can be expressed
in η and ζ as: FNR = P(D = 0|S = 1) = 1 − η and
FPR = P(D = 1|S = 0) = 1 − ζ. Then the probability of
detecting a nuclear source is:

P(D = 1) = P(D = 1|S = 1)P(S = 1)
+ P(D = 1|S = 0)P(S = 0)
= (1 − ζ) + (ζ + η − 1)P(S = 1) (3)

Under the perfect scenario where both η and ζ are 1, the
detection D is the same as the reading S. In practice, extremely
accurate sensors are not necessary. However, the effectiveness
of the detection methods does depend on the accuracy.

The threshold model (1) can be expressed as S = 1{A},
where A = {r ≤ (c/d)1/2} is a sphere, or a circle on a
2-dimensional map, centered at the nuclear source and with
radius R = (c/d)1/2. The ratio of the probabilities of a
positive reading inside and outside the set A is α = P (D =
1|A)/P (D = 1|Ā) = P (D = 1|S = 1)/P (D = 1|S = 0) =
η/(1− ζ). In the case when both FNR and FPR are less than
25%, for instance, we have α is greater than 3. That is, the
sensor is 3 times more likely to report a positive signal (D = 1)
inside A than inside Ā with moderate accuracy. This type
of statement matches the definition of a spatial cluster in the
statistical literature, in which the clusters are defined as areas
within which an incident of interest is more likely to happen
(i.e., with a higher probability of happening per squared unit)
than outside these areas. In our setting, an incident of interest
is an alert signal with D = 1. Thus, detecting spheres or
circles like A is equivalent to the cluster detection problem in
statistics.

C. Statistical Methods for Detecting Spatial Clusters

A traditional statistical method to detect a cluster of events
in spatial data is via Scan Statistics [11] [12] [13] [14]. The
most commonly used scan statistic is the maximum number
of cases in a fixed size moving-window that scans through
the study area. The test based on this scan statistic has been
shown to be a generalized likelihood ratio test for a uniform
null against a false alternative. A related scan statistic is
the diameter of the smallest window that contains a fixed
number of cases. Other scan statistics and related likelihood
based tests for localized temporal or spatial clustering have
been developed, often using a range of fixed window sizes
or a range of fixed number of cases [15] [16] [17] [18].

Scan statistics methods have also been developed under the
Bayesian framework [19] [20] [21] [22] [23].

Scan statistics procedures have been successful in detecting
a single significant cluster, and they also have had some
success in detecting multiple clusters of fixed sizes. But
difficulties arise for detecting multiple clusters of varying
sizes. In recent years, there have several attempts to overcome
this difficulty. A well known approach is a stepwise regression
model together with model selection procedures to locate
and determine the number of unusually high clustering re-
gions [5] [6]. These approaches rely on a weighted least square
formulation, although the response variable (gaps between
incidents) is typically non-Gaussian. Recently, Xie, Sun and
Naus [7] developed a latent cluster model for temporal data
which allows the use of the standard likelihood inference for
detecting multiple clusters. Sun [8] extended the temporal
cluster detection to spatial data and developed a spatial cluster
detection method to simultaneously detect multiple clusters of
varying sizes, as well as a significant single cluster. These
approaches are based on likelihood inference and they are
more efficient in detecting clusters of varying sizes than the
weighted least squares approaches developed in [5] [6]. We
use the likelihood inference based method in our study and
outline below the main points of the approach.

We first assume that there are k non-overlapping clus-
ters with the centers and radii as latent random variables:
O = (o1,o2, ...,ok), r = (r1, r2, ..., rk). Denote the jth

cluster by Aj . We assume the observations y=(y1, y2,..., yn)
are i.i.d. samples from a piecewise uniform density function:

fθ(y|O, r, k) =
{

cαi if y ∈ Ai

c if y /∈ ⋃k
i=1 Ai

where c is a normalizing constant, θ is the collection of all
unknown parameters, αi is the relative density in cluster i.

If we want to know whether there are any significant clusters
in the data, we can test a hypothesis H0:α1 = ... = αk = 1
versus H1: at least one αj �= 1. In order to do this, we need
to calculate the observed likelihood:

fθ(y, k)=
∫

...

∫
fθ(y,O, r, δ = k)dOdr

=
∫

...

∫
fθ(y|O, r, k)fθ(O, r|k)Pλ(δ = k)dr

where δ is a random variable such that {δ = k} is the event
that k non-overlapping clusters occur in the region.

Since the integration is difficult to compute directly, we
use an Expectation-Maximization (EM) algorithm (Dempster
et al [24]) to solve the estimation problem where we treat
(y,O, r, δ = k) as the complete responses and (y, δ = k) as
the observed ones. When a cluster is significant (i.e. αj �= 1),
the cluster region is determined by the conditional distribution
of oj and rj given (y, δ = k).

In reality, we don’t know the value for the number of
clusters. We use a standard model selection process, either
the AIC (Aikaike Information) or BIC (Bayesian Information)
Criterion, to determine the k value.



D. A design question on number of vehicles

Typically, the larger the number of vehicles, the higher the
statistical power of detection. Here, the statistical power can
be interpreted as the probability of detecting a true nuclear
source by the network. The required number of vehicles
in the surveillance network can be quantified by statistical
power analysis. We have developed a model and carried out a
large number of computer tests to assess power of detection
under different assumptions. For example, we have studied a
surveillance network that covers an area of 4000 feet by 10000
feet, roughly equal to the area of the roads and sidewalks of
Mid/Downtown Manhattan. In this phase of the work, we are
disregarding the street network. We fix key parameters such as
effective range, false positive and false negative rates for the
sensors. To date, this phase of the work has only dealt with
a fixed nuclear source. We place it randomly in the area and
test out the ability of detectors in vehicles to set off an alarm.

III. SIMULATION STUDY

The key of processing sensor network information is to
identify clusters from real signals mingled with random noises.
In this section we conduct simulation studies to demonstrate
that the proposed network and method can effectively detect
single and multiple nuclear sources.

A. Detecting multiple nuclear sources

Let us first consider a study window of a rectangular area
(0, 100) × (0, 300). We assume that there are two unknown
and possibly malicious sources, one at position (33,225) and
the other at (66, 60). The choices of the positions are for
illustrative purposes and they do not impose any restrictions
in the study.

We simulate 5000 points uniformly in the study window.
Each point represents a vehicle mounted with a nuclear sensor
at a given time point. The models (1) and (3) determine
whether each point will be turned on to positive or not. In (1),
we assume the energy factor c=20 for the two possible sources,
and the energy threshold d=0.2. As a result, the nuclear source
will not trigger the sensor if its distance is more than 10
units away. In (3), we assume all the sensors have η of 0.99
and ζ of 0.995. For each point i, we calculate the distance
to the stationary source rs

i and the distance to the moving
sources rm

i . Now the reading probability P(Si = 1) in (2)
is I{c/(rs

i )
2 + c/(rm

i )2 ≥ d}, and the detection probability
P(Di = 1) in (3) is 0.005 + 0.985P(Si = 1) from which
the binary Di is generated. We keep the point if Di is 1 and
delete it otherwise. With all the points, we apply the Latent
Model Clustering software by Sun [8].

Figure (1) has the simulated sensors with positive readings
and detected clusters. The "+" in the left plot marks the
locations of positive signals, and the dotted circles/ellipsoids
in the right plot mark the clusters detected by the proposed
method. They exactly point to the true locations of the nuclear
sources.
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Fig. 1. Cluster detection. The left plot displays positive signals from the
sensors via simulation. The right plot gives the detected clusters representing
two nuclear sources.

B. Design parameters in the mobile sensor network

In this simulation, we aim to design a mobile sensor network
in an area of the similar size of Midtown and Downtown
Manhattan. The study region is set henceforth to a 40×100
rectangular, with one unit representing 100 feet in real dis-
tance. Thus, the rectangular has roughly the same area as
totality of the streets and side walks south of the Central Park
in New York City. We first consider a network consisting of
taxicabs, where the vehicles or sensors roam randomly within
the entire study region.

The set of the network parameters is designed as: 1) sensor
detection range: 250 feet (scaled to 2.5 units) versus 150 feet
(scaled to 1.5 units) (both higher than currently practical); 2)
error rates (false positive rate and false negative rate): (2%,
5%) versus (5%, 10%); 3) number of sensors: from 1500 to
4000 with increments of 500. The numbers are picked in line
with the 13,000 taxicabs in New York City; 4) network type:
taxicab type versus police car type. At each set of network
parameters, we repeat 200 simulations and compute how many
times (in percentage) the proposed algorithm can correctly
detect a randomly placed nuclear source as an estimate of the
statical power of detection P (D = 1|S = 1).
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Fig. 2. Detection Power Comparison: (a) Two different sensor ranges with
the same error rates (2%, 5%). (b) Two different sets of error rates with the
same sensor range of 250 ft. The horizontal axis is the number of sensors.

We start the study on the network of taxicabs with error
rates (2%, 5%) to compare the effectiveness of the long-ranged
(250 feet) against the short-ranged (150 feet) sensors. Figure



2(a) plots the two power curves and it shows that we need
more than 3,000 long-ranged sensors to achieve around 95%
detection power, while the short-ranged sensors yield about
20% less power with the same number of sensors.

Then we continue on the tax cab type network with fixed
sensor detection range of 250 feet, and study the difference
between the better quality sensors (error rates of 2% and 5%)
and the lower quality sensors (error rates of 5% and 10%). The
two power curves are plotted in Figure 2(b), which reveals that
inferior sensors lag about 20% in the detection power at the
sensor number of 3,000.

We also consider a network that consists of police vehicles.
Note that the police patrol cars usually are limited into the
boundaries of their precincts. Thus, in our simulation we con-
sider the case that the sensors are moving within subregions to
which they belong. The New York City Police Department has
3000+ vehicles in 76 precincts in 5 boroughs, 22 in Manhattan.
Perhaps 500 to 750 are in the streets of the Manhattan borough
at one time. In our police car model, the study region is
divided into 20 identical subregions, each with the dimension
of 10×20. A subregion in our simulation represents roughly
a precinct. Within each of the 20 subregions, we simulate 25
police cars with the long-ranged (250 feet) and better quality
(error rates of 2% and 5%) sensors and place them at random
locations. With a randomly generated source in the whole
study region, this setup achieves about 35% in detection. It
suggests that the number of police cars in Manhattan would
not be sufficient to detect nuclear sources with a high power.

IV. DISCUSSION AND FUTURE WORK

This paper outlines a robust mobile sensor network and
a statistical algorithm to provide consistent and pervasive
surveillance for nuclear or biological materials in major cities.
Simulation studies suggest the proposed network and method
can effectively detect nuclear signals placed in a spatial region.
Although we only illustrate our approach at a fixed time point,
we can collect and analyze such information at consecutive
short time intervals, and it can be extended to provide dynamic
surveillance for nuclear or biological materials in a metropoli-
tan area.

Since static sensor networks provide a complementary de-
tection capability, we need to study the network with a
combination of both static and mobile sensors for optimal
results. In addition, the algorithm that we have discussed is
computationally intensive. In practice the signal points can
be much more than what we have in the simulations. So
improving efficiency and speed of the algorithms is the key to
enable us to dynamically monitor and detect nuclear materials.
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