Analytical Approaches to Aviation Security at CCICADA Command, Control and Interoperability Center for Advanced Data Analysis **A Department of Homeland Security University Center of Excellence** based at Rutgers University

> Fred Roberts Director, CCICADA

Example 1: Stadium Security

- Models for patron inspection applied at MetLife and other stadiums
- Working with every major sports league:
 - NFL, NBA, MLB, NHL, USLTA, MLS, NASCAR
- Working with venues nationwide
- CCICADA simulation tool allows varying:
 - Patron arrival rates
 - Throughput for WTMDs
 - Timing for secondary screening
 - Varying security settings on WTMDs
 - Randomization of settings, alarms, etc.
- Used to determine:
 - Number WTMDs needed
 - Number screeners needed
 - Number secondary screeners needed
- Key observation with implications for the airport of the future: WTMDs "perform" very differently in real-world settings such as outdoors than they do in the lab.

Example 2: Port Authority Bus Terminal

- PABT in NYC: world's busiest bus terminal
- Critical transit facility to move people between NYC and NJ
- Central part of any emergency evacuation scenario for Manhattan
- Terminal faces major crowd management issues:
 - Movement of people through the terminal at high traffic times
 - Overcrowding and crowd management issues during emergency situations
 - > Upon reopening after Super Storm Sandy and NYC Blackout, passenger lines extended out into the street.
- Key observation: Long queues make people vulnerable to Boston Marathon-type situations
- CCICADA project: Design a state-of-the-art, 3D agent-based integrated simulation for human crowds and vehicles for the PABT:
 - Pedestrian Movement
 - Pedestrian Movement and 3-D Bus Movement
 - Crowd Simulation/Bus Traffic Management
 - Assist plans for crowd management during reconstruction

Example 3: Inspection Algorithms

- Work with CBP, Coast Guard
- Stream of containers arrives at a port
- The Decision Maker's Problem:
 - Which to inspect?

- Which inspections next based on previous results: "sequential diagnosis"
- Approach:
 - Use binary decision trees (BDTs): go left if pass test a_i, right otherwise
 - End with output 0 (pass) or 1 (open the container)
 - Finding the "least cost" binary decision tree is computationally intractable once the number n of types of tests gets too large.
 - Stroud Saeger LANL approach feasible up to n = 4, not n = 5 (Port of LA-Long Beach: n = 5)
- Key Observation: Algorithms for inspection are difficult to obtain due to "combinatorial explosion": there are 5 x 10¹⁸ BDTs corresponding to all Boolean decision functions
- Our results:
 - New search algorithms work for n = 5.
 - Genetics-algorithms search allows us to go to n = 10
 - Our SNSRtree software allows us to go to n = 20 on laptop

Example 4: Risk Scoring for Containers/Cargo

- Risk assessment a key part of airport security
- Project supported by Domestic Nuclear Detection Office
- Goal: Predict risk score for each container
 - Quantify the likelihood of need for inspection
 - Based on manifest data
- Methods
 - We have developed machine learning algorithms to detect anomalies in manifest data.
 - > Text mining on verbiage fields leads to useful characteristics/features.
 - > Then regression based on the useful characteristics or "covariates"
 - Penalized regression" using LASSO and Bayesian Binary Regression software developed by our group gives us a risk score for a container.
 - > Looked at manifest data before and after Japanese tsunami. Found significant differences for some features and not for others.
- Key observation: Do not depend on just one feature when looking for anomalies

Example 5: Simulation Models

- Simulation tools used in stadium inspection work discrete event simulation
- Also used to simulate operations of a port of entry
 - Work with CBP
 - Port of Newark-Elizabeth
 - Led to new ways to measure success of inspection processes
 - Contributed to "outside the box" idea of inspection of containers offsite in warehouses
- Airport Simulation Models:
 - Study arrivals of international passengers at Newark Liberty International Airport
 - ➢ With CBP
 - > Advance warning of numbers of arriving passengers
 - Division into citizens and non-citizens
 - Modeled passport check lanes; queue lengths
 - Modeled effect of change of number of inspectors, of change in processing time
 - Similar methods applicable to departing passengers
- Key Observation: All simulation models involve simplifying assumptions, but allow "what-if" experiments that support planners and policy makers

