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Resilience in Complex Linked 
Systems

Fred Roberts, DIMACS

Image credits:
Hurricane damage: FEMA Photo by 
photographer Leif Skoogfors
Forest fire:  USFS Region 5
Ebola treatment unit: CDC Global
No changes made in any image
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Resilience
•Today’s society has become dependent on complex 
systems, enabled by increased digitization of our world, 
that have had a great impact on virtually all facets of our 
lives:

- Instant communication
- Ability to move money anywhere and                 
quickly
- Ability to ask a machine to make our shopping list or 
turn on our favorite music.

•Yet these changes have made us vulnerable.
•To natural disasters, deliberate attacks, just plain errors. 
•In recent years, “resilience” of complex natural and 
social systems has become a major area of emphasis.
•Credit: Santeri Viinamäki via Wikimedia commons   no changes made
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Resilience

•Resilience in response to hurricanes, disease events, floods, 
earthquakes, cyber attacks, …

Image credits:
Earthquake: U.S. Air Force photo by Master Sgt. Jeremy Lock via Wikimedia commons
Flood: Voice of America Indonesian Service via Wikimedia commons
1918 influenza outbreak: Otis Historical Archives, National Museum of Health and Medicine  
via Wikimedia.com No changes made in any image

Hospital in Kansas 
during 1918 influenza 
pandemic
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Resilience
•General concept of resilience: ability of a system to 
recover from disasters or attacks and avoid catastrophic 
collapse.

Disruption Recovery –
slightly out of 
range
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Resilience
•In a resilient system, values will return to the normal 
healthy range. 
•Or they might establish a new healthy range – one that is 
not that far from the previous one 

Recovery –
slightly out of 
range

Disruption
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Resilience
•There are many parameters that measure a 
“healthy” system. 
•Some will get back into their normal healthy range 
faster than others. 
•Do we ask that the longest time to return to this 
range be small?
•Or that the average time to return to this range be 
small? 
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Approaches to Achieving 
Resilience

•One approach to resilience is to develop 
algorithms for responding to a disruption that will 
minimize the departure from the previous state 
when things settle down.
•Another is to design systems that can bounce back 
from disruptions quickly.
•I will emphasize the former.
•Will illustrate with four examples built around 
models using graphs and networks.
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Example I: Spread and Control of 
Disease

•The spread of the new Coronavirus COVID-19 is just the 
latest worrisome example of a newly emerging disease that 
threatens not only lives but our economy and our social 
systems.

Image credit: Wikimedia commons
https://www.youtube.com/watch?v=SBboFVjLQak , 1:10
Chinanews.com/China News Service
Unchanged
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Example I: Spread and Control of 
Disease

•Ebola, Zika are other recent examples

Image credits: Wikimedia commons
Ebola: Army Medicine; Zika: Beth.herlin no changes made

Ebola Zika
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Example I: Spread and Control of 
Disease

•Modern transportation systems allow for rapid 
spread of diseases. 
•Diseases are spread through social networks.
•“Contact tracing” is an important part of any 
strategy to combat outbreaks of infectious diseases, 
whether naturally occurring or resulting from 
bioterrorist attacks.
•I will illustrate the ideas with some fairly simple 
”toy” models that will illustrate concepts of 
resilience.
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Simple Model: Moving From State 
to State

Social Network = Graph
Vertices = People
Edges = contact

Let si(t) give the state of vertex  i
at time  t.

Very simplified “toy” model: Two states:
= susceptible,     =  infected (SI Model)

Times are discrete: t = 0, 1, 2, …

t=0
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The Model: Moving From State to 
State

More complex models: SI, SEI, 
SEIR, etc.

S = susceptible, E = exposed, 
I = infected, R = recovered 
(or removed)

measles

SARS
Credit: measles: Wikimedia.org
SARS:  Medical News Today
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Threshold Processes 
Irreversible  k-Threshold Process: You change 
your state from     to      at time  t+1  if at least  k  of 
your neighbors have state     at time  t. You never 
leave state     .
Disease interpretation?  Infected if sufficiently 
many of your neighbors are infected.
Special Case  k = 1:  Infected if any of your 
neighbors is infected.
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Irreversible 2-Threshold Process

t=0
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t=1t=0

Irreversible 2-Threshold Process
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t=1 t=2

Irreversible 2-Threshold Process
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Irreversible 3-Threshold Process

t = 0
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Irreversible 3-Threshold Process
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Irreversible 3-Threshold Process
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The Saturation Problem
A great deal of attention has been paid to:
Attacker’s Problem: Given a graph, what subsets  
S  of the vertices should we plant a disease with so 
that ultimately the maximum number of people will 
get it?
Economic interpretation: What set of people do 
we place a new product with to guarantee 
“saturation” of the product in the population?
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These Problems are ”Hard”
Problem IRREVERSIBLE k-CONVERSION 
SET: Given a positive integer  p  and a graph  G,  
does  G  have a set S of size at most  p so that if all 
vertices of S are infected at the beginning, then all 
vertices will ultimately be infected?

Theorem (Dreyer and Roberts): IRREVERSIBLE 
k-CONVERSION SET is NP-complete for fixed  k 
> 2. 
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Complications to Add to Model
•k = 1, but you only get infected with a certain 
probability.
•You are automatically cured after you are in the 
infected state for  d  time periods.
•A public health authority has the ability to 
“vaccinate” a certain number of vertices, making 
them immune from infection.
•It’s the vaccination strategy that
relates to the resilience question.

Smallpox
Image credit:
https://wellcomeimages.org/indexplus/obf_images/b2/a8/
9ca500938fc44f77d4c4e49a4d90.jpg 

https://wellcomeimages.org/indexplus/obf_images/b2/a8/
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Vaccination Strategies

Credit: wikimedia
commons.org

Mathematical models are very helpful in 
comparing alternative vaccination strategies. The 
problem is especially interesting if we think of 
protecting against deliberate infection by a 
bioterrorist arttacker but applies if we think of 
”nature” as the attacker.
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Example II: Vaccinations and 
Fighting Fires

Stephen Hartke and others worked on a vaccination problem:

Defender: can vaccinate v people per time period. 
Attacker: can only infect people at the beginning.  
Irreversible k-threshold model.
What vaccination strategy minimizes number of people 
infected? 

Variation: The vaccinator and infector alternate turns, having 
v vaccinations per period and i doses of pathogen per period. 
What is a good strategy for the vaccinator?
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Example II: Vaccinations an 
Fighting Fires

Sometimes called the firefighter problem:
alternate fire spread and firefighter placement.
Usual assumption: k = 1. (We will assume this.)

Problem goes back to Bert Hartnell 1995

Image credit:
Flickr/Bundesheer Fotos
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A Simple Model (k = 1) (v = 3) 
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A Simple Model
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A Simple Model



29

A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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Some resilience questions that 
can be asked

• Can the fire (epidemic) be contained?
• How many time steps are required before fire 

is contained?
• How many firefighters per time step are 

necessary?
• What fraction of all vertices will be saved 

(burnt)?
• Does where the fire breaks out matter?
• Fire starting at more than 1 vertex?
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Containing Fires in Infinite Grids 
Ld

Fire starts at only one vertex:
d =1: Trivial.
d = 2: Impossible to contain the fire with 1 

firefighter per time step
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Containing Fires in Infinite Grids Ld
d = 2: Two firefighters per time step needed to contain the 

fire.

8 time steps

18 burnt 
vertices
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Containing Fires in Infinite Grids Ld
d = 2: Two firefighters per time step needed to contain the 

fire.

8 time steps

18 burnt 
vertices

Develin & 
Hartke: cannot do 
better than 18

Wang & Moeller: 
Cannot  contain 
fire in < 8 steps
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Containing Fires in Infinite Grids Ld
Sample Result:

d ³ 3:  In Ld, every vertex has 2d neighbors. 

Thus: 2d-1 firefighters per time step are sufficient to 
contain any outbreak starting at a single vertex.

Theorem (Develin and Hartke): If d ³ 3, 2d – 2 
firefighters per time step are not enough to contain an 
outbreak in Ld.
Thus, 2d – 1 firefighters per time step is the minimum 
number required to contain an outbreak in Ld and 
containment can be attained in 2 time steps.
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More Realistic Models
• You stay in the infected state (state   ) for  d  

time periods after entering it and then go back to 
the uninfected state (state   ). 

• We vaccinate a person in state    once k-1 
neighbors are infected (in state   ).

• What if you only get infected with a certain 
probability if you meet an infected person?

• What if vaccines only work with a certain 
probability?

• What if the amount of time you remain infective 
exhibits a probability distribution?
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Example III: Cascading Outages in 
the Power Grid

•Today’s electric power systems operate under 
considerable uncertainty.
•Cascading failures can have dramatic 
consequences. 

Blackout

Image credit:
Wikimedia commons; David Shankbone no changes 
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Cascading Outages in the Power 
Grid

Grid Resilience:
•How can we design “control” procedures so that 
the power grid can quickly and efficiently respond 
to disturbances and quickly be restored to its 
healthy state?
•Grid disruptions can cascade so fast that a human 
being may not be able to react fast enough to 
prevent the cascading disaster leading to a major 
blackout.
•We are dependent on rapid response through 
algorithms. 
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Cascading Outages in the Power 
Grid

Grid Resilience:
•We are dependent on rapid response through 
algorithms.
•Need fast, reliable algorithm to respond to a 
detected problem.

−Should not necessarily require human input
−Has to be able to handle multiple possible 
“solutions”
−Has to be able to understand what to do if all 
possible solutions are “bad”
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Cascading Outages in Power Grid
Grid Resilience:

•Tool of interest: cascade model of Dobson, et al.
–An initial “event” takes place
–Reconfigure demands and generator output 
levels
–New power flows are instantiated
–The next set of faults takes place according to 
some stochastic model
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Cascading Outages in Power Grid
Grid Resilience:

•The power grid model is not the same as a 
disease-spread model.
•Energy flows from generators through power 
lines (edges in the power grid graph).
•Each edge has a maximum capacity.
•When a vertex (substation) or edge (transmission 
line) outage occurs, power reroutes according to 
physical laws (Kirchhoff’s Law, Ohm’s Law). 
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Cascading Outages in Power Grid
Grid Resilience:

•Because of the rerouting, flows on parallel paths 
are increased.
•This could cause an overload in a distant 
transmission line. 
•So failures can take place non-locally.

Korkali, et al. (2017)
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock Increased flows on some lines
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock



51

Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

Credit: Daniel Bienstock
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Cascading Outages in the Power 
Grid

Grid Resilience:
•Cascade model of Dobson, et al.: Exercising 
“Control”

–An initial “event” takes place
–Reconfigure demands and generator output levels
–New power flows are instantiated
–Instead of waiting for the next set of faults to take 
place according to some stochastic process, use the 
cascade model to learn how to:

ØTake measurements and apply control to shed 
demand.
ØReconfigure generator outputs; get new power 
flows
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Cascading Outages in the Power 
Grid

Grid Resilience:
Cascade Model (Dobson, et al.)

•Use Model to Learn how Best to Create Islands to Protect 
Part of the Grid
•Hopefully the islands are small and in the rest of the grid, 
supply > demand.

Credit: Daniel Bienstock
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Example IV: Infrastructure 
Resilience

•Critical infrastructure systems include:
- Transportation systems
- Telecom
- Water supply systems
- Wastewater systems
- Electric power systems

•After a disruption, system begins to restore service until 
returning to performance level at or below the level before 
the disruption.

Image credit: Metropolitan Transportation Authority of the State of New York 
via Wikimedia commons, no changes made.
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Example IV: Infrastructure 
Resilience

•The following models were developed by Sharkey and 
Pinkley (2019). 
•Service is modeled by flows in networks.

Hurricane Sandy, NJ
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Infrastructure Resilience
•Network now has vertices and directed edges 
(called arcs).
•Flow can only go from vertex i to vertex j along an arc 
directed from i to j.
•Vertices represent: 

- Components that generate services (supply vertices)
- Alter the routes of the services (transshipment 

vertices)
- Consume services (demand vertices)

•Arcs move the services from one vertex to another.
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Infrastructure Resilience
•Example: Water supply system

- Supply vertices = water companies
- Transshipment vertices = substations
- Demand vertices are at households, factories, 

hospitals, malls, etc.
•Pipes are the arcs, and water is the flow.
•Meeting as much demand as possible is modeled as the 
classical maximum flow problem – both before and after a 
disruption. Home

Mall

Hospital

FactoryWater Co. 1

Water Co. 2

Substation 3

Substation 2

Substation1
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Infrastructure Resilience
Maximum Flow Problem

•Consider a network  G = (V,A)
•V = set of vertices, A = set of arcs.
•The arc i to j has a capacity uij.
•Fix one supply vertex s and one demand vertex t. 
•There is a supply A(s) at s and a demand B(t) at t. 
•We seek to assign a flow xij to the arc from i to j.
•The flow along that arc must at most the capacity:

xij ≤ uij.
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Infrastructure Resilience
Maximum Flow Problem

•Flow conservation: the sum of flows on arcs into 
a vertex =- the sum of flows out of the vertex. 
• If A(i) = {j: (i,j) ∊A}, then this says:

∑ xij =  ∑ xji
j ∊A(i)    j:i ∊A(j)

•The total flow out of s cannot exceed the supply 
A(s) and the total flow into t cannot exceed the 
demand B(t). 
•We seek to maximize the total flow that reaches t.
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Infrastructure Resilience
Maximum Flow Problem

The Maximum Flow Problem seeks to determine 
the largest amount of flow that can reach t while:

• Keeping the flow on each arc at most the 
capacity

• Not exceeding total supply and demand
• Satisfying the flow conservation requirement at 

each vertex.
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Infrastructure Resilience
Maximum Flow Problem

•The famous augmenting path algorithm (Ford-
Fulkerson Algorithm) finds the maximum flow.
•Note: the maximum flow problem is a 
simplification. 
•It assumes that there are no other constraints on 
flow.
•This might apply to supply chain networks:

-E.g., physical goods move through 
intermediate warehouses and distribution 
centers. 
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Infrastructure Resilience
Maximum Flow Problem

•For more complicated infrastructure, there are 
things like physical laws offering additional 
constraints.
•Example: Kirchhoff’s and Ohm’s Laws for power 
grid networks. 
•Example: water distribution networks involve 
constraints involving the relation between flow of 
water and pressure.
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience
Maximum Flow Problem

•If some of the arcs are destroyed, in what order 
should we reopen them?
•One goal: get closest to original maximum flow 
as early as possible.  
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience 
Maximum Flow Problem
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Infrastructure Resilience
Maximum Flow Problem

•We made the simplifying assumption that there 
was one supply vertex and one demand vertex.
•In practice, there are many supply vertices s1, s2, 
…,  and demand vertices t1, t2, …, with supply 
A(si) at si and B(ti) at ti.  
•But we can reduce this to a single supply and 
demand vertex by adding a supply vertex S with 
supply A(S) = ∑A(si) and an arc from S to each si
with capacity A(s i) and a demand vertex T with 
demand B(T) = ∑ B(ti) and an arc from each ti to T 
with capacity B(ti).  
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Infrastructure Resilience
Maximum Flow Problem

•As different components of a network are repaired 
(to the extent possible), the maximum flow 
increases. 
•How far off it is from the original max flow when 
repairs are done is one metric for resilience.
•How long it takes to complete the repairs is 
another metric for resilience.
•We turn next to the repair process.
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Infrastructure Resilience
The Repair Process

•A different approach to reopening damaged components 
uses the theory of machine scheduling.
•After a disruption, repairs are made so services can be 
restored.
•Repairs use scarce resources: work crews, equipment.

Credit: Patrick Cashin / MTA. Edited and 
cropped slightly by Daniel Case; via 
Wikimedia commons.
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Infrastructure Resilience
The Repair Process

•Simplifying assumption: can only repair one 
component at a time (one vertex or arc).
•Need a schedule for when a resource is repairing 
a component.
•In the scheduling literature, we talk about jobs on 
a set of machines, and processing them. 
•Jobs here correspond to damaged components.
•Machines correspond to work crews. 
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Infrastructure Resilience
The Repair Process

•Each job (damaged component) k has a different 
level of importance wk. 
•Each job also has a duration pk. 
•In the scheduling literature, each job k is assigned 
to a machine (work crew) mk.
•The jobs assigned to a machine (work crew) m 
are given an order. 
•So the completion time Ck of job k is the sum of 
the durations of all jobs assigned to the machine 
(crew) mk that precede job k plus the duration of 
job k.
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Infrastructure Resilience
The Repair Process

•There are various objectives for a good repair 
schedule.
•One is to minimize the weighted average 
completion time over all jobs, with the weight 
measuring the importance of the job.

min ∑k wkCk
•This is sometimes called the restoration 
performance.
• If there is just one work crew, a greedy algorithm 
minimizes this: Repair component k in non-
increasing order of the ratio wk/pk. 
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Infrastructure Resilience
The Repair Process

•A similar algorithm works if there many 
machines but each has the same processing time 
for repairing a given component.
•However, in general, most such scheduling 
problems are hard: NP-hard.
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Infrastructure Resilience
Repairing Multiple Interdependent 

Infrastructures
• In a complex city, there are many infrastructures.
• They have interdependencies. 
• Examples:

- A subway (transportation infrastructure) needs power 
(electrical infrastructure) before it can be reopened.

- A hospital needs both power and water before it can 
be reopened.

• This is modeled by studying a collection of networks, 
one for each infrastructure. 

• A given infrastructure cannot operate until there is 
sufficient level of service (flow) on certain specific 
vertices in other infrastructures. 
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Infrastructure Resilience
Repairing Multiple Interdependent 

Infrastructures
• Scheduling repair of different infrastructures will 

therefore depend on these interdependencies. 
• There is a considerable literature on this topic.
• Another complication: interdependencies among repair 

jobs – sometimes in different infrastructures.
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Infrastructure Resilience
Repairing Multiple Interdependent 

Infrastructures
• Example:

- To reopen subway lines, you need to repair a line.
- Once you repair the lines, you need to run a test train 

on the line to check for safety and quality of the 
repair. 

- But power to the line must be restored before you can 
run a test train. 

Subway tunnel pump train

Image credits:
Flood: ---=XEON=---
Pump train: Metropolitan 
Transportation Authority 
of the State of New York
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Infrastructure Resilience
Repairing Multiple Interdependent 

Infrastructures
•Example:

- Trees bring power lines down on a road.
- First need to do a safety inspection to make 

sure it’s safe to enter the road.
- Then clear debris from the road.
- Then repair downed power lines.
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Closing Comment
• I have presented several simple examples of how to 

generate responses to disruptive events.
• Even these simple examples lead to problems that are 

“hard” in a precise sense.
• Another approach is to study ways to design graphs or 

networks so as to make them more resilient in case of 
disruption.

• That is a topic for another day.


