
Sequential Decision Making Algorithms for Port of
Entry Inspection: Overcoming Computational

Challenges
David Madigan, Sushil Mittal, Fred Roberts 1

Rutgers University
Piscataway, NJ 08854 USA

1 All three authors were supported by ONR grant number N00014-05-1-0237 and NSF grant number NSFSES 05-18543 to
Rutgers University.

Abstract- Following work of Stroud and Saeger [2] and
Anand et al. [1], we formulate a port of entry inspection
sequencing task as a problem of finding an optimal binary
decision tree for an appropriate Boolean decision function. We
report on new algorithms that are more efficient computationally
than those presented by Stroud and Saeger and Anand et al. We
achieve these efficiencies through a combination of specific
numerical methods for finding optimal thresholds for sensor
functions and a novel binary decision tree search algorithm that
operates on a space of potentially acceptable binary decision
trees.

I. INTRODUCTION

As a stream of containers arrives at a port, a decision maker
has to decide how to inspect them, which to subject to further
inspection, which to allow to pass through with only minimal
levels of inspection, etc. Stroud and Saeger [2] looked at this
as a sequential decision making problem and formulated it in
an important special case as a problem of finding an optimal
binary decision tree for an appropriate binary decision
function. Anand et al. [1] reported on experimental analysis of
the Stroud-Saeger method that led to the conclusion that the
optimal inspection strategy is remarkably insensitive to
variations in the parameters needed to apply the method.

Finding algorithms for sequential diagnosis that minimize
the total "cost" of the inspection procedure, including the cost
of false positives and false negatives, presents serious
computational challenges that stand in the way of practical
implementation. To make the problem precise, we imagine a
stream of containers arriving at the port with the goal of
classifying each of them into one of several categories. In the
simplest case, these are "ok" (0) or "suspicious" (1). There are
several possible tests that can be performed and an inspection
scheme specifies which test to perform next based on
outcomes of previous tests. We can think of the containers as
having certain attributes, such as: Does the container's ship’s
manifest set off an “alarm”? Is the neutron or Gamma
emission count above threshold? Does a radiograph image
come up positive? Does an induced fission test come up

positive? We will think in the abstract of having a sensor to
test for each attribute.

In the simplest case, the attributes can be described as being
in one of two states, either 0 ("absent") or 1 ("present"), and
we can think of a container as corresponding to a binary
attribute string such as 011001. Classification then
corresponds to a binary decision function F that assigns each
binary string to a category. If the category must be 0 or 1, as
we shall assume, F is a Boolean decision function (BDF).
Stroud and Saeger consider the problem of finding an optimal
binary decision tree (BDT) for calculating F. In the BDT, the
interior nodes correspond to sensors and the leaf nodes
correspond to categories. Two arcs exit from each sensor node,
labeled left and right. By convention, the left arc corresponds
to a sensor outcome of 0 and the right arc corresponds to a
sensor outcome of 1. Even if the Boolean function F is fixed,
the problem of finding the “optimal” BDT for it is hard (NP-
complete). One can try to solve it by brute force enumeration.
However, even if the number of attributes, n, is as small as 4,
this is not practical. In present-day practice at busy US ports,
we understand that n is of the order of 3 to 5, but this number
is likely to grow as sensor technology becomes more
advanced. Even under special assumptions, Stroud and Saeger
were unable to produce feasible methods for finding optimal
BDTs beyond the case n = 4. They ranked all trees formed
from 3 or 4 sensors according to increasing tree costs using a
measure of cost we describe in Section III. Anand et al. [1]
described extensive sensitivity analysis showing that the
Stroud-Saeger results were remarkably insensitive to wide-
ranging changes in values of underlying parameters.

The purpose of this paper is to describe computational
approaches to this problem that are more efficient than those
developed to date. We describe approaches to the computation
of sensor thresholds that seek to minimize the cost of
inspection. We also modify the special assumptions of Stroud
and Saeger to allow search through a larger number of
possible BDFs, and introduce an algorithm for searching
through the space of allowable BDTs that avoids searching
through the Boolean decision functions entirely. We describe

Figure 1. A binary decision tree τ with 3 sensors. The individual sensors
classify good and bad containers towards left and right respectively.

experiments that parallel those of Stroud and Saeger’s work.

II. COMPLETE, MONOTONE BOOLEAN FUNCTIONS

The special assumptions Stroud and Saeger make in order to
make computation more feasible are to limit consideration to
so-called complete and monotone Boolean functions. A
Boolean function F is monotone if, given two strings x1x2…xn,
y1y2…yn with xi ≥ yi for all i, F(x1x2…xn) ≥ F(y1y2…yn). F is
incomplete if it can be calculated by finding at most n-1
attributes and knowing the value of the input string on those
attributes. Stroud and Saeger enumerate all complete,
monotone Boolean functions and then calculate the least
expensive corresponding BDTs under assumptions about
various costs associated with the trees. Their method is
practical for n up to 4, but not n = 5. The problem is
exacerbated by the number of BDFs. For example, for n = 4,
there are 114 complete, monotone Boolean functions and
11,808 distinct corresponding BDTs. By comparison, for
unrestricted Boolean functions on four variables, there exist
1,079,779,602 BDTs! For n = 5, there are 6,894 complete,
monotone Boolean functions and 263,515,920 corresponding
BDTs. For the unrestricted case, the number of BDTs is
approximately 5 x 1018 [2].

III. COST OF A BDT

Following Anand et al. [1] and Stroud and Saeger [2], we
assume the cost of a binary decision tree comprises two
components: (i) the cost of utilization of the tree and (ii) the
cost of misclassification. The cost of utilization of a tree is
computed probabilistically by performing a summation over
the cost of each sensor in the tree times the fraction of
containers inspected by that particular sensor. We compute the
cost of misclassification for a tree by adding the probabilities
of false positive and false negative misclassifications by the
tree and multiplying by their respective costs. Costs (i) and (ii)
both depend on the distribution of the containers and the
probabilities of misclassification of the individual sensors. For
example, consider the decision tree τ in Fig. 1 with 3 sensors.
The overall cost function to be optimized can be written as

0 00 00 01 01

1 10 10 10 11 10 11 10

1 10 10 11 11

0 00 01 01 01 01

() ()
()
()
()

a a b a b c a c

a b a b c a c FN

a a b a b c a c

a b c a c FP

f P C P C P P C P C
P P P P P P P P C
P C P C P P C P C
P P P P P P C

τ = + + +
+ + +
+ + + +

+ +

 (1)

Here, P0 and P1 are the prior probabilities of occurrence of
“good” (ok or 0) and “bad” (suspicious or 1) containers,
respectively (so P0 + P1 = 1). For any sensor s, Ps00 and Ps11
are the probabilities of correct detection of good and bad
containers respectively while Ps10, Ps01 are the probabilities of
false negative and false positive detection respectively (so Ps00
+ Ps01 = 1 and Ps11 + Ps10 = 1). These probabilities are
calculated using the same complementary error function of
threshold as described in detail in [1]. Cs is cost of utilization
of sensor s, and CFN and CFP are the costs of a false negative
and a false positive. (The notation here differs from that in [1].)
In the above expression, the first and third terms on the right
hand side together give the cost of utilization of the tree τ
while the second and fourth terms represent the costs of
negative and positive misclassifications.

IV. SENSOR THRESHOLDS

Sensors make errors. For sensors that produce a real-valued
reading (e.g., Gamma radiation sensors), a natural approach to
modeling sensor errors involves a threshold. With every
sensor s, we associate a hard threshold, Ts. If the sensor
reading for a container falls below Ts, then the output of that
particular sensor in the tree is 0;it is 1 otherwise. The variation
of sensor thresholds obviously impacts the overall cost of the
tree. While sensor characteristics are a function of design and
environmental conditions, the thresholds can, at least in
principle, be set by the decision maker. Therefore,
mathematically, a set of optimum thresholds for a given tree τ
can be defined as a vector of threshold values that minimizes
the overall cost function f(τ) for that tree.

We model the design and environmental conditions by
assuming that sensor values for good containers follow a
particular Gaussian distribution and sensor values for bad
containers follow a different Gaussian distribution. This model
is described in detail in [1] and [2] along with approaches to
finding optimal thresholds, based on assumptions about the
parameters underlying the Gaussians. In particular, [1]
describes the outcomes of experiments in which individual
sensor thresholds are incremented in fixed-size steps in an
exhaustive search for optimal threshold values, and trees of
minimum cost are identified. For example, for n = 4, [1]
reported 194,481 experiments leading to lowest cost trees,
with the results being quite similar to those obtained in
experiments in [2]. Unfortunately, the methods do not scale
and quickly become infeasible as the number of sensors
(different tests available) increases.

V. OPTIMUM THRESHOLD COMPUTATION

One of the aims of this paper is to calculate the optimum
sensor thresholds for a tree more efficiently and avoid an
exhaustive search over a large number of threshold values for
every sensor. The exhaustive search method suffers from a lot
of drawbacks like a large search step size and limited range of
search. Apart from this, the exhaustive search algorithm grows

Figure 2. Pseudocode for gradient descent method

exponentially in computational time with the number of
sensors, hence making it practically infeasible to go beyond a
very small number of sensors. To deal with these drawbacks,
we implemented various standard algorithms for nonlinear
optimization problems. We note that the objective function, f(τ)
is expected to be multimodal with respect to the various sensor
thresholds. We used random restarts to address this concern.

A. Gradient Descent Method
In this method we form a vector of thresholds by randomly

picking a threshold value for each sensor within some fixed
range. Further, we find the partial differentials of the total cost
function f(τ), defined in Equation (1), with respect to each
sensor threshold Ts, and form their vector ,∂f by evaluating
each of those partial differentials at the threshold values
selected above. Therefore

T

a b c n

f f f f
T T T T

⎡ ⎤∂ ∂ ∂ ∂
∂ = ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
f (2)

The threshold vector is then updated according to line 6 of
the pseudocode in Fig 2. By doing this iteratively, we perform
a gradient descent on the overall cost function, f(τ) towards its
minimum. The pseudocode in Fig. 2, which depends on a
parameter λ, summarizes this method. The method is quite
effective at limiting the exponential growth of computation
with increasing number of sensors. Also, it usually gives a
minimum lower than the exhaustive search method due to
much finer resolution in step size. For our experiments with 3
and 4 sensor trees, λ=10-4 gave fairly good results with
convergence achieved in a few hundred iterations.

B. Newton’s Method
To eliminate the problem of setting the value of λ

heuristically, we try to search for the minimum cost by using
Newton’s optimization method. In this method, the constant λ
is replaced by the inverse of the Hessian matrix Hf(τ). The
Hessian matrix is a square matrix of second order partial
derivatives of the overall cost function f(τ). Since all the
second derivatives of f(τ) are continuous over the sensor
thresholds, the Hessian matrix for our problem is symmetric
and is given by

Figure 3. Pseudocode for a combined method

 ()

2 2 2

2

2 2 2

2

2 2 2

2

a a b a n

b a b b n

n a n b n

f f f
T T T T T

f f f
f T T T T T

f f f
T T T T T

τ

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

= ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

H (3)

To implement this method, we just need to compute Hf(τ) and
replace line 6 of the pseudocode in Fig. 2 with the following
line:

6. assign Tstart:=Tstart – () 1
f τ

−
⎡ ⎤ ∂⎣ ⎦H f .

Though the computation of the Hessian matrix is a little
expensive and tedious, the method quickly converges in fewer
iterations than the gradient descent method. The convergence
of this method depends largely on the starting vector Tstart.
Since an absolute prior knowledge of the neighborhood of the
minimum is absent, this method occasionally drifts in the
wrong direction and hence fails to converge.

C. A Combined Method
Since the Hessian matrix Hf(τ) might not be a well-

conditioned, positive definite matrix, we explored alternative
approaches to computing positive definite approximations to
Hf(τ). These methods involve modified Cholesky
decomposition schemes and have been nicely summarized by
Fang and O’Leary [3]. For example, a naïve way to convert a
non-positive definite matrix into a positive definite matrix is
to decompose it to LDLT form and then make all the non-

positive elements of D positive. This crude approximation
may result in the failure of factorization of the new matrix or
make it very different from the original matrix. Therefore to
address this issue more reasonably, we use a modified LDLT
factorization method from Gill et al. [4] which incorporates
small error terms in both L and D at every step of factorization.
If the Hessian matrix Hf(τ) is ill-conditioned, we take small
steps towards the minimum using the gradient descent method
until it becomes well conditioned. In this way we try to
combine the advantages of both gradient descent and
Newton’s method. The pseudocode in Fig. 3 summarizes the
final scheme for finding the optimum thresholds.

VI. SEARCHING THROUGH A GENERALIZED TREE SPACE

A. Revisiting Completeness and Monotonicity
As noted in Section II, Stroud and Saeger [2] limit their

analysis to complete, monotone Boolean functions. We
propose here definitions of monotonicity and completeness for
trees themselves rather than limiting them to just the Boolean
functions from which the trees are derived. We do this
because unlike Boolean functions, binary decision trees may
not necessarily consider all individual sensor outputs to give a
final classification. For example, consider the decision tree of
Figure 1. All the containers that follow the left-most branch of
the tree do not depend upon the output of sensor c, since they
are classified without considering c along with a and b. This
type of example motivates the following definition of
complete and monotonic trees.

Complete Decision Trees
A binary decision tree will be called complete if every

sensor (attribute) occurs at least once in the tree and, at any
non-leaf node in the tree, its left and right sub-trees are not
identical.

Monotonic Decision Trees
A binary decision tree will be called monotonic if the final

class assigned to any container (with mutually independent
attributes) is the same as the independent decision based on
the last attribute in the branch corresponding to the container.
Note that it is possible to arrive at a complete binary decision

tree from an incomplete Boolean function and likewise a
monotonic tree from a non-monotonic Boolean function. For
example, consider the incomplete Boolean function for 3
sensors in Fig. 4, and the corresponding decision trees
obtained from it. The Boolean function is incomplete in sensor
a. However, trees (i) and (ii) are complete while trees (iii) and
(iv) are incomplete in a. Similarly, consider the non-
monotonic Boolean function in Fig. 5 (non-monotonic in a)
and the decision trees obtained from it. Tree (i) is monotonic
while all the other trees are non-monotonic in a. It is not hard
to show that we get 114 complete, monotonic binary trees
with 3 sensors and 66,936 with 4 sensors.

Figure 4. A Boolean function incomplete in sensor a, and the corresponding
decision trees obtained from it

B. Tree Neighborhood and Tree Space
As shown in [2], the number of binary decision trees

corresponding to complete, monotone Boolean functions
increases exponentially with addition of each new sensor.
Expanding the space of trees in which to search for a cost-
minimizing tree to the space of complete, monotonic trees,
CM tree space can be beneficial. While finding a cost-
minimizing tree in CM tree space also presents a significant
computational challenge as the number of sensors increases,
we are able to address this challenge via heuristic search
strategies that build on notions of neighborhoods in this space.
Also, while CM tree space includes all the trees arising from
complete, monotonic Boolean functions, it includes some trees
that do not arise from complete and monotonic Boolean
functions but still correspond to viable and potentially useful
inspection strategies.

Chipman et al. [5] and Miglio and Soffritti [6] provide a
comparison of various notions of neighborhood and proximity
between trees. These methods can be classified roughly into
classification-based and structure-based methods. Chipman et
al. [7] describe methods to traverse the tree space. We modify
these methods a little to define a notion of neighborhood that
better suits our problem. Basically, we define the following
four kinds of operations on a tree to get its neighboring trees.
Fig. 6 gives an example of neighboring trees obtained from
these operations for a particular tree.

Figure 5. A Boolean function non-monotonic in sensor a, and the
corresponding decision trees obtained from it

 Split: Pick a leaf node and replace it with a sensor that is
not already present in that branch, and then insert arcs from
that sensor to 0 and to 1.

Swap: Pick a non-leaf node in the tree and swap it with its
parent node such that the new tree is still monotonic and
complete and no sensor occurs more than once in any branch.

Merge: Pick a parent node of two leaf nodes and make it a
leaf node by collapsing the two leaf nodes below it, or pick a
parent node with one leaf node, collapse both of them and
shift the sub-tree up in the tree by one level.

Replace: Pick a node with a sensor occurring more than
once in the tree and replace it with any other sensor such that
no sensor occurs more than once in any branch.

It is not hard to show that these moves generate an
irreducible process in the sense that one can get from any tree
in CM tree space to any other tree using a sequence of the
moves.

C. Tree Space Traversal
We have explored alternate ways to search for a tree with

minimum cost in the entire CM tree space. Our initial
approach was a simple greedy search: randomly start at any
tree in the space, find its neighboring trees using the above
operations, move to the neighbor with the lowest cost, and
then iterate. As expected, however, the cost function is

multimodal and the greedy strategy gets stuck at local minima.
For example, there are 9 modes in the entire space of 114 trees
for 3 sensors and 193 modes in the space of 66,936 trees for 4
sensors. To address the problem of getting stuck in a local
minimum, we developed a stochastic search algorithm coupled
with simulated annealing. The algorithm is stochastic insofar
as it selects moves according to a probability distribution over
neighboring trees. The simulated annealing aspect involves a
so-called “temperature” t, initiated to one and lowered in
discrete unequal steps after every m hops until we reach a
minimum. Specifically, if we are at the ith tree τi, then the
probability of going to its kth neighbor, denoted τik, is given by

()

()

1

1

1

() ()

() ()
i

t
i ik

ki n t

i ij
j

f f
P

f f

τ τ

τ τ
=

=

∑
 (4)

where f(τi) and f(τij) are the costs of trees τi and τij, respectively
and ni is the number of trees in the neighborhood of τi.
Therefore, as the temperature is decreased, the probability of
moving to the least expensive tree in the neighborhood
increases. The pseudocode in Fig. 7 summarizes the stochastic
search algorithm.

Figure 6. An example of notion of neighborhood

Figure 7. Pseudocode for stochastic search method and simulated annealing
for finding a minimum cost tree

VII. RESULTS FOR OPTIMIZING THRESHOLDS

Our first set of experiments is described here. In these
experiments, for any given tree, starting with some vector of
sensor thresholds, we tried to reach a minimum cost in as few
steps as possible. For comparison purposes, we did an
exhaustive search for optimum thresholds with a fixed step
size in a broad range for 3 and 4 sensors. Also, in all these
experiments, the various sensor parameter values were kept
the same as in the threshold variation experiments conducted
in [1]. Both the misclassification costs and the prior
probability of occurrence of a “bad” container were fixed as
the respective averages of their minimum and maximum
values suggested by Stroud and Saeger [2]. We did this for
both the exhaustive search method and the optimization
method described in Fig. 3, to maintain consistency
throughout our experiments. With our new methods we were
able reach a minimum every time with a modest number of
iterations. For example, for 3 sensors, it took an average of
13.02 iterations (as opposed to 9,261 iterations using
exhaustive search) to converge to a minimum for all 114 trees
with Tstart = [2 2 2]T as the starting point for every tree. Fig. 8
shows the plots for minimum costs for all 114 trees for 3
sensors using both the methods. In each case the minimum
costs obtained using the optimization technique are equal to or
less than those obtained using the exhaustive search. Also,
many times the minimum obtained using the optimization
method was considerably less than the one from the
exhaustive search method.

VIII. RESULTS FOR SEARCHING CM TREE SPACE

For the second set of experiments, we utilized the notion of
neighborhood around a tree using the four operations

0 20 40 60 80 100

100

150

200

250

300

350

400

450

500

Tree Number

To
ta

l C
os

t

Tree costs at optimum thresholds

Combined Optimization
Exhaustive search

Figure 8. Minimum costs for all 114 trees for 3 sensors. To avoid confusion,

dashed vertical lines join markers for the same tree.

described earlier. We randomly started 10 times with some
tree in the CM tree space of 66,936 trees for 4 sensors and
then kept moving stochastically in the neighborhood of the
current tree, forming a chain of trees, until we reached a
minimum. The exponent 1/t was initialized to 1 and was
incremented by 1 after every 10 hops in a chain. We found
that the average number of trees evaluated for their costs for
each chain for a set of 100 such experiments was 489. Table 1
summarizes the results of these experiments. Each row in the
table corresponds to the tree number that was obtained as the
least cost tree along with its cost and frequency (out of 100).
The last column in the table gives the rank of each of these
tree minima among all the local minima in the entire tree
space. For example, the algorithm was able to find the best
tree (global minimum, as determined using the methods of
Section VI, part C) 42 times, second best tree 15 times and so
on. Thus, the algorithm was able to find one of the least cost
trees most of the time. However, these trees are different from
the lowest cost trees obtained in Anand et al. [1] and are in
fact less costly than those trees. Another important
observation is that although each of these four trees differ in
structure, they still correspond to the same Boolean function,
F(abcd) = 0001010101111111, where the ith digit gives
F(abcd) for the ith binary string abcd if strings are arranged in
lexicographically increasing order. Also, interestingly, this
Boolean function is both complete and monotonic. Detailed
understanding of the nature of the differences in the trees will
require understanding of the relevant properties of trees and
we defer this to future work.

IX. DISCUSSION

As we have already noted, the exhaustive search methods,
both for finding the optimum thresholds for a given tree and
for finding a minimum cost tree among all possible trees,
become practically infeasible beyond a very small number of
sensors. The various optimization techniques discussed in this

TABLE I
SUMMARY OF RESULTS FOR STOCHASTIC SEARCH FOR 4 SENSOR TREE SPACE

Tree Number 1 Cost 2 Frequency 3 Mode Rank
30995 59.3364 42 1
30959 59.3364 15 2
31011 59.3364 25 3
31043 60.1924 10 4

1 Tree numbers differ from those used in Anand et al [1].
2 The costs of the first three trees differ only in the 14th place after the decimal,
but all the trees are listed in the order of increasing costs.
3 Frequency out of 100.

paper provide faster and better methods to limit the search
space and arrive at a minimum quite efficiently. Although we
were able to obtain results for 5 sensors using the stochastic
search method described above, we have not included them in
this paper. The reason is that the number of complete and
monotonic trees obtained for 5 sensors is of the order of a few
million. Since, it is computationally very hard to obtain least-
cost trees using exhaustive search over all those trees, it is
difficult to validate the results obtained from the stochastic
search method. Also, since the notion of neighborhood that we
use is structure-based, we allow only very short moves in the
tree space while looking for the least cost tree. Although we
tried to eliminate this problem by incorporating annealing, the
results suggest that defining a better notion of neighborhood
that aligns more to the sensor parameters will be a promising
future direction of work. For example, if we could define
“distance” between various sensors mathematically, we could
use those distances to define the notion of overall distance
between any two trees and hence define a neighborhood of a
tree accordingly. Another possible direction of research could
be the use of genetic algorithms or evolutionary techniques to
build better decision trees from a given set of good trees.
Examples of such methods can be found in [8] and [9].
References [10] and [11] describe applications where genetic
and evolutionary algorithms successfully solved highly multi-
modal problems. While our methods have led to substantially
more efficient algorithms, even trees involving just 5 sensors
still present a computational challenge so there is still a great
deal of work to do.

ACKNOWLEDGMENTS

The authors thank Peter Meer and Oncel Tuzel for their
ideas on implementing the Gradient Descent Method and
Newton's Method for finding the optimum thresholds. We also
thank Richard Mammone for many of the initial ideas that led
to this research.

REFERENCES
[1] S. Anand, D. Madigan, R. Mammone, S. Pathak and F. Roberts,

“Experimental Analysis of Sequential Decision Making Algorithms for
Port of Entry Inspection Procedures,” in S. Mehrotra, D. Zeng, H. Chen,
B. Thuraisingham, and F-X Wang (eds.), Intelligence and Security
Informatics, Proceedings of ISI-2006, Lecture Notes in Computer
Science #3975, Springer-Verlag, New York, 2006.

 [2] P. D. Stroud, and K. J. Saeger, “Enumeration of Increasing Boolean
Expressions and Alternative Digraph Implementations for Diagnostic
Applications,” Proceedings Volume IV, Computer, Communication and
Control Technologies, (2003), 328-333

[3] H. Fang, and D. P. O’Leary, "Modified Cholesky Algorithms: A Catalog
with New Approaches," University of Maryland Technical Report CS-
TR-4807, 2006.

[4] P. E. Gill, W. Murray, and M. H. Wright, Practical
Optimization,Academic Press, 1981.

[5] H. A. Chipman, E. I. George and R. E. McCulloch, “Extracting
Representative Tree Models From a Forest”, working paper 98-07,
Department of Statistics and Actual Science, University of Waterloo,
1998.

[6] R. Miglio and G. Soffritti, “The Comparison between Classification
Trees through Proximity Measures,” Computational Statistics and Data
Analysis, Vol. 45 (2004), pp. 577-593.

[7] H. A. Chipman, E. I. George and R. E. McCulloch, “Bayesian CART
Model Search,” Journal of the American Statistical Association, 93
(1998) 935-960.

[8] A. Papagelis and D. Kalles, “Breeding Decision Trees Using
Evolutionary Techniques,” Proceedings of the Eighteenth International
Conference on Machine Learning, (2001) 393-400.

[9] Z. Bandar, H. Al-Attar and D. McLean, “Genetic Algorithm Based
Multiple Decision Tree Induction”, Proceedings of the 6th International
Conference on Neural Information Processing - ICONIP’99 - IEEE; (pp
429-434); November 1999. IEEE Cat. No. 99EX378. ISBN 0-7803-
5871-6.

[10] C. Im, H. Kim, H. Jung and K. Choi, “A Novel Algorithm for
Multimodal Function Optimization Based on Evolution Strategy,” IEEE
Transactions on Magnetics, Vol. 40 (2004) 1224-1227.

[11] J.-P. Li, M. Balazs, G. Parks and P. Clarkson “A Species Conserving
Genetic Algorithm for Multimodal Function Optimization, Evolutionary
Computation, (2002) 10(3):207--234.

