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Abstract-we consider a functional equation that arises in problems of scheduling with priorities 
and earliness/lateness penalties. We solve the equation and note how it can be used to analyze 
the invariance of conclusions about optimality of a schedule if the scale used to measure priority is 
replaced by another acceptable scale. 
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1. INTRODUCTION 

There has been a great deal of interest in problems of scheduling when we apply penalties for late 

arrival, and, more recently, interest in such problems when we also apply penalties for early arrival. 

A complication that makes such problems especially difficult is when the penalty depends upon 

the priority of an item being scheduled. In this case, the scales of measurement used to measure 

priority enter into the picture and it is necessary to consider possible admissible transformations 

of scale (for example by changing units or zero points). Mahadev, PekeE, and Roberts [l] raise 

the question of determining whether or not the conclusion of optimality in a scheduling problem 

can change if we apply an admissible transformation of scale in priority measurement. They give 

examples to show that this can happen and conditions under which it does not. In measurement 

theory, we call a statement whose truth does not change after admissible transformations of 

scales a meaning&Z statement. (For discussion of this concept, see for example Lute et al. [2] 

and Roberts [3-51.) In this paper, we investigate a functional equation that plays a role in giving 

conditions under which the conclusion of optimality of a schedule is a meaningful conclusion. 

In the next section, we present and solve the functional equation. In Section 3, we formulate 

the scheduling problem and apply the solution to the equation. 

2. THE FUNCTIONAL EQUATION 

Suppose that hi and hp are two functions from the positive reals to the positive reals. We say 

that hi is semilinear if for every (Y > 0 and p, if t > 0 and cut + p > 0, then 

hi(ot + P) = K(o,P)hi(t) + &(a, 6% &(a, P) > 0. (1) 
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We say that the pair (hl, hz) is pair semilinear if hl and hz are both semilinear and Ki is the 

same function for i = 1,2 and Li is the same function for i = 1,2. 

Equation (1) arises in measurement theory if we apply what Lute [6] has called the “principle 

of theory construction”: If a law relates a dependent variable to an independent variable, then an 

admissible transformation of the independent variable should lead to an admissible transformation 

of the dependent variable. This equation arises when both the independent and dependent 

variables are “interval scales” (see Section 3). This “principle” was first applied by Lute to 

determine the general forms of the possible laws of psychophysics.’ Avoiding the principle, 

Roberts and Rosenbaum [13] observe how one comes up with the same functional equation under 

different assumptions. The same equation arises in understanding the general form of scientific 

laws, not just those of psychophysics, in understanding the possible merging functions in various 

decision making contexts, and in understanding the possible index numbers in economics. See 

Roberts [5] for a summary of such applications. 

The functional equation (1) was solved by Lute [6] under the assumption that hi is continuous, 

that it is defined from the reals to the reals, and that it holds even if t 5 0 and at + p 5 0. 

Roberts [3] gives another proof of Lute’s result. The assumption of continuity can readily be 

replaced by the assumption that hi is increasing in t. Under either assumption, the possible hi 
are then all the functions of the form hi(t) = ait + bi, where ai and bi are real constants. AczBl, 

Roberts, and Rosenbaum [14] obtain the same result after dropping the assumption that hi is 

continuous or increasing in t. However, the proof is not readily translatable to one for functions 

from the positive reals to the positive reals and in addition the possibility that at + p 5 0 is used 

in a crucial way in the proof. In this paper, we show how to get around both of these difficulties. 

THEOREM 1. Suppose hi is a function from the positive reals to the positive reals and hi is 

semilinear. Then hi(t) = a$ + bi, where ai 2 0, bi 2 0 and either ai > 0 or bi > 0, and 
conversely any function satisfying these conditions is semilinear. If (hl, hz) is pair semilinear, 

then in addition al = a2 and bl = b2, and conversely these conditions imply that (hl, h2) is pair 

semilinear. 

PROOF. The proof mimics the solution to functional equation (1) in AczBl, Roberts, and Rosen- 

baum [14], where t 5 0 and at + p I 0 are allowed. We prove the first part of the theorem for 

h = hi. Define W(t) = h(t) -h(l). Choose &a,/3 SO that t > 0, cr > 0, ot +/3 > 0. Then by (l), 

h(a + P) = K(w P)hP) + L(a, 0 

Combining this with (l), we get 

h(cut + ,0) - h(a: + P) = K(Q, P)Wt). 

Adding h( 1) - h( 1) to the left hand side gives us 

w(at + P) = K(w @w(t) + w(Q + p), (2) 

for t > 0, a > 0, crt + j3 > 0, and in particular for t > 0, cr > 0, fi 2 0. Hence, for t > 0, Q > 0, 
CY’ > 0, p 2 0, p’ 2 0, 

W(aa’t + CUP + P’) = K((YQ', ai3 + P’)w(t) + W(m’ + a@ + P’) 

‘Lute no longer refers to this as a “principle” and, following criticisms of Rozeboom [7,8], points out (e.g., Lute [Q]) 
that it is not universally applicable. Lute [personal communication, August 20, 19851 now argues that this should 
not be an assumption, but it should be derived from deeper principles of theory construction. Attempts in this 
direction, at least for the related concept of dimensional invariance, are described in Krantz et al. [lo], Lute [ll], 
and Lute et al. (21. See also Lute [12]. 
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and also 

If aW(t) + b = c?V(t) + d for t > 0, we conclude that either ~8 =f c or W(t) is a constant 

Cd - WC@ - cf. Thus, either W(t) is constant fin which case h(g) is constant aad we are done) 

or for QI, cxyf > 0 and & ~9” 2 0, 

Letting cr = d = 1 in (31, we obtain for all j?, p” 2 0, 

f0r all t > 0, Ty > 0, j.72 0. Letting /II = 0 in (7) gives us for all 2 > 0, Q! > 0, 

Howevm, we also have 
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Since Y = Y’, we get 
M(a + a’)W(a”) = [M(o) + M(Cr’)]W(o!“). 

Thus, unless W is identically 0, in which case h is a constant and we are done, we conclude that 

M(cY + a’) = M(a) + M(d). (10) 

Now this plus (4) both hold for (Y, (Y’ > 0. It is a well-known result [15] that if (10) and (4) hold 

for all a, (II’ > 0, then either M(a) = CY for all (I > 0 or M(o) E 0. However, M(Q) is known to 

be > 0 since K > 0, and we conclude that M(o) = (Y for all (Y > 0. It follows from (8) that 

W(d) = cxW(t) + W(a) 

for all cr, t > 0. Now note that W(at) = W(ta), so 

aW(t) + W(a) = tW(a) + w(t), 

or 

W(t)(o! - 1) = W(a)(t - 1) 

for all 0, t > 0. In particular, letting Q = 2, we get 

W(t) = W(2)(t - 1) = at + c 

for all t > 0. It follows that 

h(t) = at + b 

for all t > 0. Moreover, a must be nonnegative for otherwise h(t) = at + b < 0 for t sufficiently 

large. Also, b must be nonnegative for otherwise h(t) = at + b < 0 for t sufficiently small. Now a 

and b cannot both be zero, since otherwise h(t) = at + b = 0 and we have assumed that h > 0. 

This completes the proof in the case where hi is semilinear, except for the converse part, which 

is straightforward. 

Now suppose that (hl, h ) ’ p 2 is air semilinear. From the semilinearity result, 

hl(crt + P) = alat + ulP + bl, hz(at + p) = uzat + a2P + b2. 

Since this must hold for all t > 0, it follows by equation (1) that 

KI(Q, P) = ala, K2(a,P) = aza. 

Since K1 = Ks and cy > 0, we conclude that ai = ~32. But then 

-h(a, P) = ad + bl, L2(a,P)= unP+b2 = al/?+ bp. 

Since L1 = La, we conclude that bl = b2. The proof of the converse part is straightforward. 1 

3. APPLICATION TO SCHEDULING 

To see how functional equation (1) arises in scheduling, let us define a specific scheduling 

problem. We have n items that need to be transported from an origin to a destination. Let 

ti, i = 1,. . . ) n, denote some measure of the priority of i and di denote the desired arrival time 

of i. We assume that each di is a positive integer. At any given arrival time, there is a certain 

available positive integer capacity c for transportation. A schedule u is then an assignment of an 

integer arrival time ui to each item i, subject to the constraint that at any given arrival time, 

at most c items are scheduled to arrive. A penalty is based on the vectors t = (tl, t2, . . . , t,), 
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d = (CA,&,... ,&), u = (w,212,... , un) and the integer c. (We use the convention that bold- 

face letters indicate vectors.) This penalty is denoted P(u; t, d, c) and we seek to minimize it. 

We shall assume that the penalty is summable in the sense that it can be expressed as a sum 

CyZ1 g(ti, ui, di) and separable in the sense that g can be expressed as 

g(k a, d) = 
hl (t)f(a, 4, if a > d, 

hAt)f(a, d), if a < d. 

for functions hl and ha defined on the positive reals into the positive reals and f (a, d) defined 

on N x N into the reals. It is often useful to assume that the penalty function P is symmetric 
in the sense that hl = h2, and t-increasing in the sense that each hi is increasing in t. Further 

information about any of these concepts can be found in Mahadev, PekeE, and Roberts [1,16] or 

in many of the references to the scheduling literature found there. Sample references that in turn 

include many references are Baker and Scudder [17], Hall and Posner [18], and Garey, Tarjan, 

and Wilfong [19]. 

If cp(t) is a function, we shall let p(t) denote the vector (cp(tl), p(tz), . . . , cp(tn)). The question of 

whether or not the conclusion that schedule u is optimal is a meaningful conclusion is equivalent 

to the question: If P(u; t,d,c) is minimum for this scheduling problem defined by t, d, c, is 

P(u;cp(t),d, ) 1 c a so minimum for the scheduling problem defined by p(t), d, c, when cp is an 

admissible transformation of scale? 

In measurement theory, we say that a scale is a ratio scale if the admissible transformations of 

scale correspond exactly to multiplication by a positive constant, i.e., they are transformations 

of the form p(t) = cut, cx > 0. These transformations correspond to change of unit. We say that 

a scale is an interval scale if the admissible transformations correspond exactly to multiplication 

by a positive constant and addition of another constant, i.e., they are transformations of the form 

q(t) = cut + ,f3, cu > 0. These transformations correspond to change of unit and change of zero 

point. We say that a scale is an ordinal scale if the admissible transformations correspond exactly 

to the (strictly) monotone increasing transformations. For further information about scales of 

measurement, see the books by Krantz et al. [lo], Lute et al. [2], Suppes et al. [20], or Roberts [3], 

and see the paper by Roberts [5]. We will be interested here in the question of whether or not the 

conclusion that u is optimal for a scheduling problem is meaningful if priorities are measured on 

an interval scale. In the situation where scales must be positive, not every change of zero point 

is allowed. Given t > 0, we only allow transformations at + p that result in positive numbers. 

Thus, in the case of scheduling with positive priorities measured on an interval scale, we consider 

transformations of the form p(t) = at + p where Q > 0, t > 0, and cut + ,B > 0. This is exactly the 

situation under which we consider functional equation (1). If the penalty function is summable 

and separable, then P(u; q(t), d, c) involves terms of the form hi(& + /3). Under Lute’s principle 

of theory construction (see Section 2), if hi(t) also defines an interval scale, then an admissible 

transformation at + p of t should lead to an admissible transformation Ki(a, @hi(t) + Li(cr, 0) 
of hi(t), where Ki((~,p) is the change of unit (depending upon (Y and p) and Li((r,p) is the 

change of zero point. This gives us equation (1). We are not going to argue for the principle of 

theory construction here or argue that equation (1) has to hold. Rather, we are going to argue 

that if it does hold and some other conditions hold, then certain conclusions about optimality of 

a schedule under interval scale priority measurement are meaningful. Surprisingly, it turns out 

that these conclusions are meaningful even under ordinal scale priority measurement. 

Mahadev, Pekee, and Roberts [16] study a very specific scheduling problem, one where there 

are only two desired arrival times and all items but one have the same desired arrival times. Here, 

d = (d, d, . . , d, Ic). They prove the following theorem. 

THEOREM 22. Consider a scheduling problem t,d,c with d = (d, d, . . . , d, k), c = 1, and either 

2Technically, Mahadev, PekeE, and Roberts make the assumption that tl > t2 2 .. > t,-1. However, this 
assumption is not needed for this theorem to hold, only to define what they call a (d, k)-problem. 
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(i) k > d or 
(ii) n/2 < d and k < d. 

Suppose that the penalty function is summable, separable, symmetric, and t-increasing and 

f(a,d) = Dla - dl f E foi. D > 0. Then the statement that u is optimal for this problem is 

meaningful if priorities are measured on an ordinal scale. 

Let us say that a summable, separable penalty function is pair semilinear if (hl, hz) is pair 

semilinear. By the observations in Theorem 1, if the penalty function is semilinear, then al = a~, 

b1 = bz and hi(t) = hz(t) = At -t B. In case A > 0, we have symmetry and t-increasingness. 

Thus, these hypotheses of Theorem 2 do not need to be assumed. In case A = 0, hl and hz are 

constants and so for all u, P(u; t,d,c) = P(u; cp(t),d,c). In this case, optimality of u is clearly 

preserved under any transformation cp. Thus, we have the following corollary of Theorem 2. 

THEOREM 3. Consider a scheduling problem t, d, c with d = (d, d, . . . , d, k), c = 1, and either 

(i) k > d or 

(ii) n/2 < d and k < d. 

Suppose that the penalty function is summable, separable, and pair semilinear, and f (a, d) = 

DJa - dl + E for D > 0. Then the statement that u is optimal for this problem is meaningful if 

priorities are measured on an ordinal scale. 

It is interesting to note that Theorem 3 fails if we change the definition of a pair semilinear 

penalty function to be that each of hl and hz are individually semilinear. Suppose that hi(t) = 

3 + t, h2(t) = 3t, f(a,d) = (a - d(, d = (2,2,3), t = (l,l, l), c = 1. Then one can show that 

the schedule u = (2,1,3) is optimal. However, if cp(t) = 7t and t is replaced by cp(t) = (7,7,7), 

then u is no longer optimal because v = (2,4,3) has a smaller penalty. 

For the special case d = 1, Mahadev, PekeE, and Roberts 1161 obtain the following result. 

THEOREM 43. Consider a scheduling problem t, d, c with d = (1, 1, . . . , 1, k), k # 1, and c = 1. 

Suppose that the penalty function is summable and separable, hi(t) is increasing in t, and 

f(a, d) = Dla -dJ for D > 0. Then the statement that u is optimal for this problem is meaningful 

if priorities are measured on an ordinal scale. 

Let us say that a summable, separable penalty function is 1-semilinear if hl is semilinear. The 

next result follows from Theorem 4 in the same way that Theorem 3 follows from Theorem 2. 

We use the observation in Theorem 1 that semilinearity of hl implies hi(t) = At + B, A 2 0. 

THEOREM 5. Consider a scheduling problem t, d, c with d = (1, 1, . . . , 1, k), k # 1, and c = 1. 

Suppose that the penalty function is summable, separable and I-semilinear, and f(a, d) = Dla-dl 

for D > 0. Then the statement that u is optimal for this problem is meaningful if priorities are 

measured on an ordinal scale. 
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