
DIMACS Series in Discrete Mathematics

and Theoretical Computer Science

Greedy Algorithms in Economic Epidemiology

Fred S. Roberts

Abstract. Economic issues are central to the control of disease because of
the limited funds available for public health everywhere in the world, even
in the wealthiest nations. These economic issues are closely related to issues
of individual human behavior, as well as to fundamental disease processes
and their relation to the environment. While mathematical formulation of
epidemiological processes is an old discipline, combining such formulations
with economic, behavioral, and environmental formalisms is relatively new,
and has come to define the field of “Economic Epidemiology.” Many problems
in Economic Epidemiology can be formulated as optimization problems. The
simplest approach to solving such a problem is often a greedy algorithm, one
that always chooses the best available (cheapest, highest rated, ...) alternative
at each step. We review some classical operations research problems arising
in Economic Epidemiology for which the greedy algorithm in fact gives an
optimal solution, and others for which it can be guaranteed to be reasonably
close. We then present two examples from our own work. Examples will be
chosen from: assigning workers to health care tasks; choosing medical supplies
to maximize value and minimize cost; locating a health care facility so as to
minimize the travel times of users; and reopening flooded roads to allow the
passage of emergency vehicles. Other examples will include optimal strategies
for vaccination given a limited supply; and optimal strategies for sequencing
medical tests or public health interventions in order to minimize costs and
maximize success.

1. Introduction

Economic issues are central to the control of disease because of the limited
funds available for public health everywhere in the world, even in the wealthiest
nations. These economic issues are closely related to issues of individual human
behavior, as well as to fundamental disease processes and their relation to the en-
vironment. While mathematical formulation of epidemiological processes is an old

2010 Mathematics Subject Classification. Primary: 92C60 Medical epidemiology, 05C90
Graph theory applications, 05C05 Trees, 90B80 Discrete location and assignment, 91B99 Eco-
nomics .

The author gratefully acknowledges the support of the National Science Foundation un-
der grant numbers INT-0629714, INT-0629720, EIA-0205116, and DMS-0829652 to Rutgers
University.

c©2009 American Mathematical Society

1

2 FRED S. ROBERTS

discipline, combining such formulations with economic, behavioral, and environ-
mental formalisms is relatively new, and has come to define the field of “Economic
Epidemiology.”

Economic Epidemiology deals with the interplay among economics, individual
and group human behavior, and disease ecology, and depends heavily on mathe-
matical formulations of this interplay.1 Among other things the field seeks optimal
strategies and policy to improve our understanding of the spread of infectious agents
and of ways to control that spread [5, 6, 7, 61]. In recent years, many mathemat-
ical models have been developed to compare alternative public health intervention
strategies. However, these models commonly disregard varying individual responses
to disease outbreaks and the economic contexts in which public health policies and
individual responses to them must be evaluated. To evaluate health interventions
and potential public policies, models of disease spread must incorporate behaviors
of individuals and groups and economic scenarios, and we must develop methods
that individuals and public institutions can utilize in response to or preparation for
disease events. Some recent surveys of economic epidemiology are [43, 76]. Some
workshops on Economic Epidemiology contain useful introductions to the field. See
[25, 26]).

Many problems in Economic Epidemiology can be formulated as optimization
problems:

• Find a solution that maximizes or minimizes some value such as lives
saved.

• Find the optimal location for a clinic or hospital.
• Find the optimal assignment of health care workers to jobs.
• Optimize investment in health care supplies.
• Minimize the total cost of a series of interventions or medical tests.
• Control an outbreak with as small an investment in vaccines as possible.

Such optimization problems naturally invite inclusion of economic variables.
They are also readily modified to include ways of measuring behavioral variables, for
example through inclusion of individual or societal utility functions and measures of
risk averseness. The challenge here is how to measure utility, risk, and more subtle
factors such as peer pressure, motivation, etc. For a discussion of measurement
of relevant epidemiological and behavioral variables, see [66, 67, 68, 69]. Some
ideas of how to measure behavioral variables that can be brought into optimization
models are discussed in [55], which summarizes a DIMACS workshop aimed at
modeling social responses to bioterrorism involving infectious agents.

Often, the simplest approach to an optimization problem is a greedy algo-
rithm: Choose the best (cheapest, highest-rated, . . .) available alternative at each
step. In general, greedy algorithms will find locally optimal solutions, but not glob-
ally optimal ones. We give examples from Economic Epidemiology, some where a
greedy solution achieves a global optimum and others where it doesn’t, but where
we can either make modifications or get a bound on how far from optimal we are.
We quickly review some classical operations research problems arising in Economic
Epidemiology for which the greedy algorithm in fact gives an optimal solution and
others for which it can be guaranteed to be reasonably close. We then present
two longer examples from our own work. Examples will be chosen from: assigning

1Thanks to Abba Gumel and Ramanan Laxminararayan for introducing me to the topic of
Economic Epidemiology and for the ideas in this paragraph.

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 3

Table 1. Workers and Jobs they Are Qualified For

Worker Wi W1 W2 W3 W4 W5 W6

Jobs Qualified For J2, J3, J5, J2, J3 J2, J3 J2, J3 J1, J5 J3
Cost of Using Wi 90 50 80 60 60 100

workers to health care tasks; choosing medical supplies to maximize value and min-
imize cost; locating a health care facility so as to minimize the travel times of users;
and reopening flooded roads to allow the passage of emergency vehicles. The more
detailed examples concern optimal strategies for vaccination given a limited supply;
and optimal strategies for sequencing medical tests or public health interventions
in order to minimize costs and maximize success.

2. Assigning Health Care Workers to Jobs

Suppose we have n health care workers W1,W2, . . . ,Wn and m health care jobs
J1, J2, . . . , Jm to be filled. We know which workers are qualified to do which jobs
and the cost of using each worker. Our goal is to assign workers to jobs they are
qualified for, each to at most one job, filling as many jobs as possible, and among
all ways of filling as many jobs as possible, find the way to do it with minimum total
cost. This is known in Operations Research as the Minimum Cost Assignment
Problem. (For a discussion of this problem, see for example [9].)

The following is a greedy algorithm for this problem. (See [9].) Create a set
C of workers chosen. Choose first for C the least expensive worker and assign
the worker to any acceptable job. (Choose arbitrarily throughout all the steps if
there are ties.) At each stage, add the next least expensive worker to C if there is
an acceptable (feasible) assignment using all the workers in the new C obtained by
adding this worker. (This might require reassigning jobs from an earlier assignment
of workers previously in C.) If a next least expensive worker cannot be added to C,
go to the next least expensive one in the list. Continue until you have gone through
all the workers. (This is a greedy algorithm because at each step we are choosing
the least expensive worker.)

To illustrate this algorithm, consider the data of Table 1. With this data, the
algorithm proceeds as follows.

• Step 1: Pick W2 for C and assign it to, say, J2.
• Step 2: Pick W4 for C and use the assignment W2 − J2,W4 − J3. Now,
C = {W2,W4}.

• Step 3: Pick W5 and use the assignment W2 −J2,W4−J3,W5 −J5. Now,
C = {W2,W4,W5}.

• Step 4: Pick W3. Note that W2,W3,W4 can only be assigned to J2 and
J3, so there is no way to add W3 to the set C.

• Step 5: Pick W1. This can only be assigned to J2, J3, or J5, all of which
are already in the assignment. However, we could switch W5 to J1 and
then assign W1 to J5, so we add W1 to C. C is now {W1,W2,W4,W5}.

• Step 6: Pick W6. Since one of W2,W4 has to be assigned to J3, there
is no way to make an assignment for W6. Thus, we end with C =
{W1,W2,W4,W5} and only jobs J1, J2, J3, J5 are covered.

4 FRED S. ROBERTS

This solution turns out to be optimal. It is not hard to show that the greedy
algorithm always gives an optimal solution to the Minimum Cost Assignment Prob-
lem. (See [9] for a discussion of why this works.)

3. Investing in Health Care Options

Suppose we are faced with a selection of health care options in which to invest.
Option i has an estimated cost ci and an estimated value vi. We might be consid-
ering alternative health care facilities; alternative supplies for a clinic; alternative
research programs; alternative interventions; etc. The problem is to determine
which ones to invest in so that the total cost is within budget and the total value
is as large as possible.

This is an example of a Knapsack Problem. We have a fixed size knapsack, a
number of items we can take, each of a certain size and value, and we want to choose
items for the knapsack so as to maximize their value but not exceed the capacity of
the knapsack. In general, knapsack problems are difficult to solve computationally:
They are NP-complete. The problem we have posed can be stated as follows:

Maximize
∑

vixi

Subject to
∑

cixi ≤ B,

where xi = number of items i chosen. There are several variants of the problem.
For example, if we allow at most one of each item, then we have the restriction
xi = 0 or 1. If the number of items i we can take is bounded for each i, we speak of
a Bounded Knapsack Problem and have the restriction xi ∈ {0, 1, . . . , bi}. If we
allow an arbitrary number of copies of each item, then we speak of the Unbounded
Knapsack Problem and xi can be any integer. We shall discuss the latter problem
here.

A greedy algorithm for the Unbounded Knapsack Problem is due to George
Dantzig [24]. Sort items in decreasing order of value per unit cost: vi/ci. Pick as
many copies of the first item as possible until no more are possible or until one more
would violate the budget constraint

∑
cixi ≤ B. Continue in the same way with

the second item, then the third, etc. (This is a greedy algorithm since at each step
we pick the most valuable item available to us that does not violate the constraint.)
To illustrate, consider the data in Table 2. The options in the case of AIDS pre-
vention could be things like: (1) Condom Distribution; (2) Educational Posters;
(3) Distribution of Clean Needles; (4) Testing Programs; (5) Funded Research; etc.
With this data, the algorithm proceeds as follows.

• Item 1 has the highest ratio vi/ci, i.e., 10. We can pick two copies of item
1, with a total cost of 70+70 = 140.

• Item 3 has the next highest ratio vi/ci, i.e., 9. We can pick one copy of
item 3. The total cost of our knapsak is now 140+35 = 175.

• Next, we pick three copies of item 5, and our knapsack cost is 175+24 =
199.

• Next, we consider item 4, but it is too costly to add to the knapsack.
• Finally, we pick one copy of item 2, and our knapsack cost is 199+5 =
204.

For the Unbounded Knapsack Problem, the greedy algorithm does not always
attain the optimal value. For example, consider the data of Table 3. Then the

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 5

Table 2. Value and Cost of Alternative Health Care Investments

Option i 1 2 3 4 5
Value vi 700 15 315 35 64
Cost ci 70 5 35 7 8

Available Budget B = 205

Table 3. Value and Cost of Alternative Health Care Investments

Option i 1 2 3
Value vi 50 52 1
Cost ci 10 11 1

Available Budget B = 99

greedy algorithm has us pick nine copies of item 1 plus nine copies of item 3, at
a total value of 459, while picking nine copies of item 2 gives us a higher value,
468. In fact, the greedy algorithm can lead to solutions that are not close to the
optimal value. However, if A is the maximum total value

∑
vixi achievable, then

the greedy algorithm always achieves a total value of at least A/2 [79]. Is this a
satisfactory outcome? It depends upon the application and the tradeoff between
the need to make a speedy decision and the ability to wait and do a complicated
calculation. For instance, in a natural disaster such as a hurricane or earthquake,
or a rapidly escalating newly-emerging disease outbreak, we might need to make
rapid decisions. A case in point is a bioterrorist attack. After it is discovered, e.g.,
when a plume might still be in the air, we might only have several hours or even
minutes to make quick decisions in response. However, if we have the time to do
a more time-consuming calculation, we might do better than the relatively speedy
greedy algorithm. For the Bounded Knapsack Problem, the algorithm can lead to
a solution that is quite a bit further from the optimal. In fact, consider the case
where there are two items, with v1 = 2, c1 = 1, v2 = v, c2 = v. If the budget B is
v and at most one copy of each item can be chosen, the greedy algorithm chooses
item 1 for a total value of 2, whereas choosing item 2 gives a total value of v. Thus,
the ratio between the value of the greedy solution and that of the optimal solution
can be arbitrarily close to 0.

Representative examples of greedy algorithms for general knapsack problems
can be found in [1, 62, 63, 74]. Some references on greedy algorithms for the
Unbounded Knapsack Problem are [38, 42, 49, 53, 54].

4. Locating Health Care Facilities

Suppose that we have a number of users of a planned set of health care facilities.
Where do we put the facilities and how do we assign a user to a facility? Suppose we
always associate a user to the facility she can get to with minimum cost (choosing
arbitrarily in case of ties). There are two costs associated with a choice of locations
for the facilities. One is the cost fi of locating (building, opening, maintaining)
a facility at location i. This is either a one-time, fixed cost, or a continuing cost,
or a combination of the two. Another cost is the cost cij of assigning a user at
location j to a facility at location i, which is the distance between i and j (or
in some applications the distance multiplied by the importance of the user at j

6 FRED S. ROBERTS

or the demand for facility use at j). We wish to minimize the sum of these two
costs, summed over all facilities that are located and over all j corresponding to
users. Note that we allow more than one facility and there is a tradeoff between
the increased cost if we have more facilities and the corresponding reduced cost of
getting users to them.

Given a set S of facilities, let F be the sum of costs fi over all facilities in S
and C be the sum of distances cij over all users j, where i is the (a) closest facility
to j. We seek to find S so that F + C is as small as possible. Of course, if there
is a one-time fixed cost for locating facilities and a minimal cost for maintaining
them, this could be dominated by the continuing costs of getting users to facilities,
and the costs fi could be disregarded entirely. However, in other cases, the facility
location costs are quite high and continuing regularly. There are many variants of
the facility location problem. (For reference, see for example [28].) This version is
called the Uncapacitated Facility Location Problem - uncapacitated since we
have no limit on the number of facilities.

In many cases in the literature, the potential facility locations and the users are
located along the edges or at the nodes of a network, with edges having “weights”
corresponding to distance between nodes or some other measure of cost of going
between the nodes. Charikar and Guha [18] consider the case where both facility
locations and users are only at nodes of such a network. They use a greedy algorithm
to first find a preliminary solution S. To find this, order the nodes of the network
in order of increasing cost of locating a facility at the node (choosing arbitrarily
in case of ties). Choose p so that if S is the set of the first p facilities, then the
cost F + C associated with S is as small as possible. (Note of course that adding
facilities would increase F , but decrease (or not increase) C.) (This involves a greedy
algorithm because one chooses at each stage the node where the cost of building a
facility is as small as possible. This is then greedy in a second sense of choosing how
many nodes to include so as to minimize a combination of costs, though this latter
choice is not repeated at each step in the way we have defined greedy algorithm.)

To illustrate this part of the algorithm, consider the network of Figure 1. In
this, the number on the edge {x, y} represents the distance d(x, y) between the
nodes x and y if traveling along that edge, while if u and v are not joined by an
edge, d(u, v) is the length of a shortest path between u and v in the network. In
our example, all distances are taken to be 1. Thus, the distance d(b, f) between b
and f is 2 (take the cycle from b to a to f). The costs of locating the facilities are
given in the figure next to each node. Suppose that we have three users, located
at b, c, f as indicated by circles in the figure. Ordering nodes in order of increasing
cost gives the order f, d, b, e, a, c. First take S = {f}. Then the costs associated
with S are F = cost of f = 0.5, C = d(f, f) + d(b, f) + d(c, f) = 0 + 2 + 3 = 5, so
F + C = 5.5. Next, take S = {f, d}. Here, F = cost of f + cost of d = 0.5 + 1 =
1.5, C = d(f, f) + d(b, f) + d(c, d) = 0 + 2 + 1 = 3, F + C = 4.5. The third step
is to take S = {f, d, b}. This gives a cost of F = 4.5 and C = 1, so F + C = 5.5.
All subsequent sets S have F > 4.5, so F + C > 4.5. We conclude by the greedy
algorithm that the preliminary solution is S = {f, d}.

The algorithm continues as follows. At each step, we try to improve the cost
of the current solution S, starting with the preliminary solution. Choose a node k
at random. (It may be one already in S.) Choose a subset T of facilities in S to
remove from S. If a user at node j is closer to k than to the facility i in S she is

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 7

b

af

e

d c

Cost 3

Cost 5Cost 0.5

Cost 4

Cost 1 Cost 6

Figure 1. Users are located at circled nodes of this network, dis-
tances are indicated along edges, and costs of locating facilities are
indicated next to nodes where facilities would be located.

assigned to, change her assignment to k and add k to S. If a user at node j was
assigned to a facility that was removed from S, i.e., a facility in T , assign her to
k and add k to S. Call the resulting set of facilities S+. For the chosen k, over
all possible sets T , find one to remove from S so that S+ minimizes the total cost
F+C of the revised assignment. If the new set of facilities that results has a smaller
total cost F +C than that associated with S, use it for the new S. Otherwise, stay
with the previous S.

Charikar and Guha [18] show that, given ε, the algorithm is guaranteed to
achieve a cost F+C that is at most 2F ∗+3C∗+ε(F ∗+C∗) in at most O(nlog(n/ε))
steps, where F ∗ and C∗ are costs associated with an arbitrary optimal solution.

Note that the way Charikar and Guha define S+, it is possible that in some
steps, node j is not assigned to its closest facility in S+. We could be tempted to
change the definition of S+ to include a step that would reassign a user at node
j to its closest facility i in S+ and then removing from S+ all nodes not used for
facilities. However, this method does not attain any better bound on the outcome
value of F + C and takes longer because we have to find closest facilities.

Representative publications on the Uncapacitated Facility Location Problem,
including some with greedy algorithm approaches, are [16, 34, 39, 40].

5. Rerouting Emergency Vehicles in Case of Floods

When there is a flood or other natural disaster that results in roads being
closed, we need to find fast ways to reroute emergency vehicles such as ambulances.
We might want to reroute emergency rescue vehicles to avoid rising flood waters
while minimizing delay in provision of medical attention and still getting afflicted
people to available hospital facilities. A well-known and widely studied Operations
Research problem that arises in this context is the Minimum Spanning Tree
Problem [70]. Given a graph or network with positive real numbers as weights on
the edges, a spanning tree is a tree using the edges of the graph and containing all
of the nodes. It isminimum if the sum of the numbers on the edges used is as small
as possible. Minimum spanning trees arise in many applications. The emergency
vehicle routing problem can be looked at as follows: Given a road network, find
usable roads that allow you to go from any node to any other node, minimizing
the lengths of the roads used. This is exactly the problem of finding a minimum
spanning tree.

A well-known and efficient greedy algorithm for solving the Minimum Spanning
Tree problem is Kruskal’s algorithm [47]: List the edges of the graph in order of

8 FRED S. ROBERTS

20
22

16

2

8

10

15

14

28

26

Figure 2. The solid edges define a minimum spanning tree.

increasing weight (choosing arbitrarily in case of ties). Going through the edges
in this order, for each edge, greedily include it if it does not form a cycle with
edges already chosen. Stop when no more edges can be included. (The algorithm
is greedy because at each step we choose the least weight alternative that does not
violate the constraint about cycles.)

A simple example illustating this algorithm is defined by the network shown
in Figure 2. The lowest weight edge is that with weight 2 and the next lowest is
that with weight 8. Both are included. The next lowest has weight 10 and it is
also included. However, the weight 14 edge, which is next, forms a triangle with
the edges of weights 8 and 10, so it is not included. We next include the edge of
weight 15 and then the edge of weight 16. The remaining edges all form cycles
with edges previously included. The resulting edges form the chosen spanning tree,
which is illustrated with the solid lines in the figure. It is well known that Kruskal’s
algorithm always gives an optimal solution to the Mininum Spanning Tree problem
[22, 47, 70].

6. Vaccination Strategies for Control of a Highly Infectious Disease

Spreading through a Social Network

Many diseases spread through social networks by going from infected people
to those with whom they are in contact. We can represent the contacts in a social
network in a graph: The nodes are people and an edge between two people indicates
contact. In such a social network, nodes are in different states at different times.
In one very simple case, suppose there are only two states, susceptible (0) and
infected (1). Suppose that si(t) gives the state of node i at time t and that times
are discrete, i.e., that t = 0, 1, 2, In the simple case of a highly infectious disease,
let us assume that an individual changes state from susceptible to infected at time
t + 1 if at least one of its neighbors are in the infected state at time t and that
an individual never leaves the infected state. (More generally, we can study the
variant of this model where an individual changes state from susceptible to infected
at time t + 1 if at least k of its neighbors are in the infected state at time t. This
model has been studied in [27], who call it an irreversible k-threshold process.
See also [11, 46].)

In this simple situation, we can investigate vaccination strategies. Let us say
you have a limited amount of vaccine available each time period, say v doses.
Whom should you vaccinate? More precisely: What vaccination strategy minimizes

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 9

number of people ultimately infected if a disease breaks out with one infection?
Here, we assume that a vaccinated node cannot move into the infected state. This
problem in the context of the model above is sometimes known as the Firefighter
Problem. The latter problem arises when we have a forest and a fire (epidemic)
starts at one tree. At each time period, some trees are burning (infected) and
once they start burning, they don’t stop. At every time period, we can place v
firefighters (think of vaccinating) at unburned nodes. Then the fire spreads to
neighboring trees that are not yet burning (susceptible) and not protected by a
firefighter (vaccinated node). A rather large literature has grown up about this
problem. For some references, see [27, 36]. Some of the questions that have been
asked in connection with the firefighter problem include:

• Can the fire be contained?
• How many time steps are required before the fire is contained?
• How many firefighters per time step are necessary?
• What fraction of all nodes will be saved (burnt)?
• Does where the fire breaks out matter?
• What if the fire starts at more than one node?
• How does containment work for different graph topologies?
• How can we construct graph topologies to minimize damage?
• What is the complexity of different formalizations of this problem in the
computer science sense?

Let MV S(G, u) be the maximum number of nodes that can be saved in graph
G if a fire starts at node u and there is one firefighter per time period. MacGillivray
and Wang [50] asked whether at least p nodes can be saved, i.e., whether there a
vaccination strategy such that MV S(G, u) ≥ p? They showed that this problem is
NP-complete.

The firefighter problem has been studied for a variety of particular types of
graphs. To give one example, consider the case of an infinite d-dimensional square
grid Ld. Here, nodes are located at points (i, j, . . .) in d-space with integer coor-
dinates i, j, . . . and two nodes are neighbors if they differ by 1 on one component.
Assume that the fire starts at one node. If d = 1, then we have nodes on a line
and it is trivial to control a fire in two steps with three burned nodes if the number
of firefighters v per time step is 1. If d = 2, it is impossible to control the fire
(epidemic) with v = 1. But v = 2 suffices and with this case of two firefighters per
time step, the fire (epidemic) can be controlled in eight steps with 18 burned trees
(infected individuals). To illustrate the latter, consider Figure 3. Each node has an
(x, y) coordinate starting with x = 0 on the left-most vertical line and with y = 0
on the bottom horizontal line. Suppose a fire starts at node (2,2). Here, nodes on
fire are shown with black circles, nodes with firefighters with white circles.

• Step 1. Place two firefighters, at nodes (1,2) and (2,1).
• Step 2. The fire spreads to nodes (2,3) and (3,2). We now place firefighters
at (1,3) and (2,4).

• Step 3. The fire spreads to (3,1), (3,3), and (4,2) and we place firefighters
at (3,0) and (4,1).

• Step 4. The fire now spreads to (3,4), (4,3), and (5,2) and we place
firefighters at (5,1) and (6,2).

• Step 5. The fire spreads to (3,5), (4,4), and (5,3) and firefighters are put
at (2,5) and (3,6).

10 FRED S. ROBERTS

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8

Figure 3. Spread of a fire on the grid when we have two firefight-
ers available each time period. Burnt nodes are in black circles,
firefighters are placed on nodes with white circles.

• Step 6. The fire spreads to (4,5), (5,4), (6,3) and we place firefighters at
(6,4) and (7,3).

• Step 7. The fire spreads to (4,6) and (5,5) and firefighters are placed at
(4,7) and (5,6).

• Step 8. The fire spreads to (6,5) and firefighters are placed at (6,6) and
(7,5), thus controlling the fire.

We now consider the case d ≥ 3. A graph is called r-regular if every node
has exactly r neighbors. Wang and Moeller [77] observed that in such a graph,
r − 1 firefighters per time step are always sufficient to contain any fire outbreak
(at a single node). In Ld, every node has degree 2d. Thus, when d ≥ 3, 2d − 1
firefighters per time step are sufficient to contain any outbreak starting at a single
node. Hartke [36] showed that 2d − 2 firefighters per time step are not enough to
contain an outbreak of this kind in Ld. Thus, 2d− 1 firefighters per time step is the
minimum number required to contain an outbreak in Ld and containment can be
attained in two time steps.

If a fire can start at more than one node, then the following are some interesting
results about outbreaks in Ld. If d = 2, Fogarty [30] showed that two firefighters
per time step are sufficient to contain any outbreak at a finite number of nodes. If
d ≥ 3, Hartke [36] showed that for any positive integer f, f firefighters per time
step is not sufficient to contain all finite outbreaks in Ld. In other words, for d ≥ 3
and any positive integer f , there is an outbreak such that f firefighters per time
step cannot contain the outbreak.

Ng and Raff [59] have studied Ld and modified the assumption that f is the
same for each time period. Let f(t) be the number firefighters available at time
t. Ng and Raff assume that f(t) is periodic with period pf . This could happen for
example if firefighters (doses of vaccine) arrive in batches. Then if

Nf = f(1) + f(2) + + f(pf),

Rf = Nf/pf is the average number firefighters available per time period. Ng and
Raff showed that if d = 2 and f is periodic with period pf ≥ 1 and Rf > 1.5, then
an outbreak at any number of nodes can be contained at a finite number of nodes.

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 11

v0

v1 v2

v3 v4 v5 v6 v7 v8

v9 v10 v11v12 v13

v14 v15

Figure 4. The greedy algorithm does not obtain the optimal fire-
fighting solution for this tree.

The firefighter problem has also been studied on graphs that are trees. Consider
a rooted tree with a fire starting at the root and suppose that v = 1. In a rooted
tree, every edge goes down from a node to its immediate “children” one level below
it. We define the weight of node x to be the number of descendants of x in the
rooted tree, where a descendant of x is a node obtained from x by following a path
that goes from x to a child y of x to a child z of y In such a tree, once a
firefighter is placed at a node, it and all of its descendants are “saved” and cannot
be burned. A greedy algorithm for deploying firefighters in a rooted tree is the
following: At each time step, place a firefighter at a node x that has not been saved
or burned, such that the weight of x is maximized (choosing arbitrarily in case of
ties). (This algorithm is greedy since at each step it looks to place a firefighter so as
to maximize the number of nodes that can be saved at that stage of the procedure.)
Consider for example the tree of Figure 4. Suppose a fire starts at node v0. Clearly
the weight is maximized by using immediate descendants, i.e., children, of v0, and
of these, v2 has higher weight (7) than v1 (6). Thus, we put a firefighter at node
v2. In the next time period, the fire spreads to v1. Note that in the next stage, we
can limit ourselves to descendants of v1 since all descendants of v2 are saved. We
now look at the children of v1 and put a firefighter on one of them. Two of them
maximize weight, i.e., v3 and v4, so we put a firefigher on one of them, say v3. The
fire now spreads to the remaining children of v1, i.e., v4, v5, v6. Finally, we place a
firefighter on one of the children of v4, v5, v6, namely v13. In the end, we have saved
11 nodes.

It is not hard to show that the greedy algorithm does not obtain the maximum
number of saved nodes, i.e., M(G, u), where u is the root. Indeed, suppose at the
first step we put a firefighter at v1 instead of v2. The fire now spreads to v2 and
we put the next firefighter at v7, with the fire spreading to v8. Finally, we put a
firefigher at v11. In this way, we save 13 nodes.

Hartnell and Li [37] showed that for any tree G with one fire starting at the
root u and one firefighter to be deployed per time step, the greedy algorithm always
saves more than one half ofM(G, u) nodes, i.e., more than one half of the number of
nodes that the best possible algorithm saves. Is this a satisfactory accomplishment?

12 FRED S. ROBERTS

It could be if time is of the essence, we have a fast-moving epidemic or bioterrorist
attack, and we need to develop and implement an efficient algorithm very quickly.

7. Algorithms for Sequential Public Health or Medical Decision

Making

Suppose that a patient presents with certain symptoms. Which test do we do
first? On the basis of the outcome of the first test, which test do we do next? Tests
are expensive. So are false positive and false negative results. In this situation,
“cost” is a combination of cost of testing and cost of false results. We might ask:
In what order should we do tests in order to minimize total “cost”?

An analogous problem is the following. We have several potential interventions
for a public health crisis. Assume funds limit us to one intervention at a time.
Which intervention do we invest in first? On the basis of the outcome of the first
intervention, which do we launch next? Interventions are expensive. So are false
positive and false negative assessments of the outcome of our interventions. “Cost”
is a combination of cost of the intervention and cost of false results. In what order
should we launch the interventions in order to minimize total “cost”?

Similar “sequential diagnosis” problems arise in many areas: communication
networks (testing connectivity, paging cellular customers, sequencing tasks, etc.),
manufacturing (testing machines, fault diagnosis, routing customer service calls,
etc.), artificial intelligence and computer science (optimal derivation strategies in
knowledge bases, best-value satisficing search, coding decision tables, etc.), inspect-
ing containers in ports, etc. An illustrative list of references for such applications
includes [14, 15, 17, 21, 23, 29, 33, 41, 44, 45, 48, 60, 64, 65, 72, 73, 78, 80].
Sequential diagnosis/decision making is an old subject, but one that has become
increasingly important with the need for new models and algorithms as the tradi-
tional methods for making decisions sequentially do not scale.

The following approach builds on the approach to sequential diagnosis in in-
spection of containers at ports, originally presented by Stroud and Saeger [75].
In particular, we describe a method that was developed in a series of papers on
container inspection: [2, 10, 51, 52].

Consider the medical testing problem. A physician is looking to determine if
a patient has disease x. The doctor has a variety of tests to choose from (complete
blood count, endoscopy, MRI, stress test, etc.). In the end, the patient is to be
classified into one of several categories. Simple case: 0 = “doesn’t have the disease,”
1 = “does have the disease.” A testing scheme specifies which test is to be made
based on previous observations.

In the case of public health interventions, say we are looking to determine if
an epidemic can be controlled. We have a variety of interventions to choose from
(close schools if abseenteeism is above 15%, close airports, invest in prophylactics,
vaccinate health care workers, etc.). In the end, the epidemic is to be classified
into one of several categories, in the simplest case “0 = controllable,” “1 = not
controllable.” An intervention scheme specifies which intervention is to be made
based on assessments of previous interventions. We shall present our discussion in
the language of the medical testing problem, though an analogous discussion cojuld
apply to the public health intervention problem.

The 0’s and 1’s suggest binary digits (bits). A bit string is a sequence of bits,
e.g., 0001, 1101. A Boolean function on n variables is a function that assigns

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 13

to each bit string of length n a 0 or a 1. Patients have attributes related to the
disease being tested for, each in a number of states. (Sample attributes could
be white blood cell count, PSA, creatinin clearance, fever greater than 40 degrees
Centigrade, severe cough, severe fatigue). In the simplest case, attributes are in
state 0 or 1 (absent or present). Then a patient corresponds to a bit string like
011001 and classification is a decision function F that assigns each bit string to
a category. If there are two categories, 0 and 1 (“has disease” or “doesn’t have
disease”), the decision function F is a Boolean function. This is the case to be
discussed here.

There are 22
n

Boolean functions of n variables. This number grows rapidly
and it quickly becomes infeasible to look at all possible Boolean functions when
considering a testing problem. The problem is then: Given a patient, test her
attributes until we know enough to calculate the value of F. A testing scheme tells
us in which order to test the attributes to minimize cost. Even this simplified
problem is hard computationally. Simplifications include the assumption that F
is known. Another is that attributes are independent. Other complications that
might arise would be if there were precedence relations in the attributes (e.g., we
can’t test attribute a4 before testing attribute a6). Moreover, the cost of testing for
an attribute may depend on attributes tested before, or F may depend on variables
that cannot be directly tested or for which tests are too costly. Such problems are
hard computationally. There are many possible Boolean functions F. Even if F is
fixed, the problem of finding a good (least cost) testing scheme is NP-complete.
Several classes of Boolean functions F allow for efficient testing schemes: k-out-
of-n systems [8, 31, 32, 35, 72], certain series-parallel systems [4, 13, 57, 71],
read-once systems [3, 58], “regular systems” [12], and Horn systems [78].

We can represent Boolean functions by using binary rooted (directed) trees.
All directed edges (arcs) head from a node to either a left or right child. Nodes with
no outgoing arcs (no children) are called leaves. When a Boolean function is based
on testing for attributes, we can represent it as a binary rooted tree called a binary
decision tree (BDT) where leaf nodes correspond to categories 0 or 1 and other
nodes correspond to tests. We take a right arc from a test node if the test indicates
that the attribute it is testing for is present, and a left arc otherwise. Consider for
example the BDT shown in Figure 5. We reach category 1 from the root by going
from a0 left to a1, then right to a2, and then right to 1 or by going from a0 right to a2
and then right to 1. Hence, a patient is classified in category 1 iff she has attributes
a1 and a2 and not a0 or attributes a0 and a2 and possibly a1. The corresponding
Boolean function is given by F (111) = F (101) = F (011) = 1, F (abc) = 0 otherwise.

Note that two different BDTs can correspond to the same Boolean function.
The BDT of Figure 6 corresponds to the same Boolean function as the BDT of
Figure 5. Since the second BDT has fewer test nodes than the first, if all test nodes
in a BDT are equally likely to be visited, then the BDT with fewer test nodes
would be preferable, at least in the simple case where all tests cost the same and
all tests are equally likely to lead to false positives or false negatives. Even in the
simple case where the “cost” of a BDT is measured by the number of test nodes,
the problem of finding the least cost BDT for a given fixed Boolean function is
hard. Doing it by enumerating all possible BDTs is already impractical when there
are only four kinds of tests, i.e., we have a Boolean function of n = 4 variables. In
practice, we don’t know what Boolean function to use and seek one that is least

14 FRED S. ROBERTS

a0

a1 a2

0 a2

0 1

0 1

Figure 5. A binary decision tree for sequential testing.

a2

0 a0

a1 1

0 1

Figure 6. A binary decision tree corresponding to the same
Boolean function as the BDT of Figure 5.

costly in some sense. Then one approach is to limit the problem to special types of
Boolean functions, lest it get totally out of hand.

This is the idea developed by Stroud and Saeger [75]. They enumerated all
“complete, monotone” Boolean functions and calculated the least expensive corre-
sponding BDTs. Their method is practical for n ≤ 4 but not for n = 5. Given
two bit strings x1x2 . . . xn, y1y2 . . . yn, suppose that xi ≥ yi for all i implies that
F (x1x2 . . . xn) ≥ F (y1y2 . . . yn). Then we say that F is monotone. Here 111 has
highest probability of being in category 1. A Boolean function F of n variables is
incomplete if F can be calculated by finding at most n− 1 variables and knowing
the value of the input string on those variables, and F is complete otherwise.

Stroud and Saeger found the least cost tree by enumerating all BDTs corre-
sponding to a given complete, monotone Boolean function and repeating this for
all complete, monotone Boolean functions. The problem is that there are too many
complete, monotone Boolean functions. When n = 2, there are 6 monotone Boolean
functions, only 2 of them are complete, monotone, and there are 4 BDTs for cal-
culating these 2 complete, monotone Boolean functions. When n = 3, there are 9
complete, monotone Boolean functions and 60 distinct BDTs for calculating them.
When n = 4, there are 114 complete, monotone Boolean functions and 11,808 dis-
tinct BDTs for calculating them. (Compare 1,079,779,602 BDTs for all Boolean

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 15

functions.) When n = 5, there are 6,894 complete, monotone Boolean functions
and 263,515,920 corresponding BDTs. (Even worse: compare 5x1018 BDTs corre-
sponding to all Boolean functions.) We need alternative approaches; enumeration
is not feasible!

So far, we have considered only one possibility: that one BDT is cheaper than
another if it has fewer nodes. This is oversimplified. There are more complex costs
involved than number of tests in a tree. The Stroud-Saeger method can still be
applied here. Performing a test has a number of costs. There is a unit cost of
performing the test, a fixed cost of purchasing the equipment to make the test, and
a delay cost from waiting to take the test and waiting for the results. Much of the
work so far has disregarded fixed and delay costs and has been aimed at minimizing
unit costs (though Stroud and Saeger have done some work with queueing models
to take into account delay costs). Even if we just consider unit costs, the answer
may be complicated; it depends on how many (or which) nodes of the decision
tree are actually visited during an “average” procedure toward diagnosis. This will
depend on the costs of doing a test for a given attribute and on a “distribution”
of the disease in the population from which individuals to be tested are chosen.
Moreover, it can also depend on the probability of test errors, i.e., the probability
that a test for attribute ai gives a false positive result (saying ai is present when
it is not) or a false negative (saying ai is not present when it is). If we are given
the probability of an error for each kind of test (and assume that this probability
is independent of the time that the test is given) and given the a priori probability
that a patient has the disease, we can calculate the “expected” cost of utilization
of the tree, which we denote by Cutil. Under these assumptions, we can also
calculate the probability PFP that a given BDT leads to a false positive outcome,
or the probability PFN that it leads to a false negative outcome in the classification
scheme, i.e., the probability that the patient is classified as having the disease when
she doesn’t or not having it when she does. A challenge is to put costs on these
false positive and false negative classifications, CFP , CFN respectively. Both of
these costs are hard to measure. In the former case, if it means beginning a series
of treatments, it could be expensive, not to mention having a psychological cost
to patient. In the latter case, it would mean that the patient would go untreated.
In our work [2, 10, 51, 52], following Stroud and Saeger, we have used the cost
function

CTot = CFP × PFP + CFN × PFN + Cutil

.
To repeat: PFP , PFN are calculated from the tree and Cutil is calculated from the
tree, the costs of the tests for the attributes, the a priori probability of disease, and
the probabilities of test errors. The values of CFP , CFN are inputs. Note: a model
for developing probability of errors in individual tests for attributes, that depends
on thresholds, is also developed by Stroud and Saeger [75] and by Madigan, Mittal
and Roberts [51, 52].

Sometimes adding more possibilities results in being able to do more efficient
searches. Madigan, Mittal and Roberts expanded the space of trees from those
corresponding to Stroud and Saeger’s complete, monotonic Boolean Functions to
“complete and monotonic” BDTs. There are some advantages to this: Unlike
Boolean functions, BDTs may not have to consider all test inputs to give a final

16 FRED S. ROBERTS

decision. Moreover, we might allow more potentially useful trees to participate in
the analysis. In [51, 52], a binary tree is called monotonic if all the left leaves are
class “0” and all the right leaves are class “1.” A binary tree is called complete
if every type of test occurs at least once in the tree and, at any non-leaf node in
the tree, its left and right sub-trees are not identical. We consider the space of
CM Trees, trees that are complete and monotonic. This is a much richer space
than the space of BDTs corresponding to complete, monotone Boolean functions.
If n = 3, there 60 BDTs from complete, monotone Boolean functions, but 114 CM
trees. If n = 4, it is 11,808 for the former, 66,600 for the latter.

Madigan, Mittal, and Roberts define a way of moving in CM Tree Space from
one tree to a neighboring one. This follows ideas in the literature from Chipman,
George, and McCulloch [20] and Miglio and Soffritti [56], who provide a compar-
ison of various definitions of neighborhood and proximity between trees, and from
Chipman, George, and McCulloch [19], who describe methods to traverse the tree
space. Specifically, Madigan, Mittal and Roberts define four operations that take
a CM tree into a “neighboring” CM tree. We split a CM tree when we pick a leaf
node and replace it with a test node that is not already present in that branch, and
then insert arcs from that test node to 0 and to 1. We perform a swap on a CM
tree if we pick a non-leaf node in the tree and swap it with its parent node such
that the new tree is still monotonic and complete and no test node occurs more
than once in any branch. In the operation merge, we pick a parent node of two
leaf nodes and make it a leaf node by collapsing the two leaf nodes below it, or pick
a parent node with one leaf node, collapse both the parent node and its one leaf
node, and shift the sub-tree up in the tree by one level. Finally, we perform the
operation replace on a CM tree when we pick a test node occurring more than once
in the tree and replace it with any other test node such that no test node occurs
more than once in any branch. Madigan, Mittal and Roberts showed that any tree
in CM tree space can be reached from any other tree by using these neighborhood
operations repetitively. These neighborhood operations are the basis of algorithms
for searching through CM Tree Space.

The basic idea of Madigan, Mittal, and Roberts is to use a greedy search
algorithm. In this algorithm, we randomly start at any tree in CM tree space, find
its neighboring trees using the above operations, move to the neighbor with the
lowest cost, and iterate until we find a minimum. The problem with this algorithm is
that CM Tree Space is highly multi-modal (with more than one local minimum) and
it is easy to get stuck at a local minimum. This led Madigan, Mittal, and Roberts
to implement a stochastic search algorithm coupled with the method known as
simulated annealing to find the best tree. This is a variant of the greedy algorithm.
The algorithm is stochastic: It selects a neighboring tree according to a probability
distribution over neighboring trees. The simulated annealing aspect involves a so-
called “temperature” t, initiated to one and lowered in discrete unequal steps after
every h hops so that as the temperature decreases, the probability of moving to the
least expensive tree in the neighborhood increases. This greedy search algorithm
allowed calculations with n up to 5 types of tests, leading to BDTs with cost very
close to (and in many cases equal to) the minimum and finding them significantly
faster than existing methods of searching through BDTs obtained from complete,
monotonic Boolean functions.

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 17

8. Concluding Comments

Allocation of scarce resources, health care or otherwise, has been a topic of
mathematical analysis for a long time. In the case of health care, we might try to
define “optimality” and seek “optimal” allocation strategies, or near-optimal strate-
gies. In the context of infectious disease prevention, there is the potential to focus
our efforts to optimize different, more complex outcomes: the fewest cumulative
number of infections, the fewest cumulative number of deaths, the cumulative cost
of infection control, the indirect societal impacts caused by an outbreak of disease,
the average utility of an outcome to individuals in the population, etc. For many
of these, the simplest algorithmic approach is sometimes a greedy one. As we have
seen: Sometimes it pays to be greedy.

References

1. Akay, Y., Li, H.,and Xu, S., “Greedy algorithm for the general multidimensional knapsack
problem,” Annals of Operations Research, 150 (2007), 17-29.

2. Anand, S., Madigan, D. Mammone, R., Pathak, S., and Roberts, F., “Experimental analysis of
sequential decision making algorithms for port of entry inspection procedures, in S. Mehrotra,
D. Zeng, H. Chen, B. Thuraisingham, and F-X Wang (eds.), Intelligence and Security Infor-
matics, Proceedings of ISI-2006, Lecture Notes in Computer Science #3975, Springer-Verlag,
New York, 2006, 319-330.

3. Angluin, D., Hellerstein, L., and Karpinski, M., “Learning read-once formulas with queries,”
Journal of the Association for Computing Machinery, 40 (1993), 185-210.

4. Arseneau, L., Optimal Testing Strategies for s,t-Series Parallel Systems, Master’s Thesis,
Combinatorics and Optimization, University of Waterloo, 1996.

5. Barrett, S., “Eradication versus control: the economics of global infectious disease policies,
Bull. World Health Organ., 82 (2004), 683-688.

6. Bauch, C.T., “Imitation dynamics predict vaccinating behaviour,” Proc. Biol. Sci., 272

(2005), 1669-1675.
7. Bauch, C.T., and Earn, D.J., “Vaccination and the theory of games, Proc. Natl. Acad. Sci.

USA, 101 (2004), 13391-13394.
8. Ben-Dov, Y., “Optimal testing procedures for special structures of coherent systems,” Man-

agement Science, 27 (1981), 1410-1420.
9. Bogart, K.P., Introductory Combinatorics, Pitman Publishing, Marshfield, MA, 1983.

10. Boros, E., Elsayed, E., Kantor, P. Roberts, F., and Xie, M., “Optimization problems for
port-of-entry detection systems,” in H. Chen and C.C. Yang eds.O, Intelligence and Security
Informatics: Techniques and Applications, Springer, 2008, 319-335.

11. Boros, E., and Gurvich, V., “On complexity of algorithms for modeling disease transmission
and optimal vaccination strategy,” RUTCOR Research Report 16-2007, Rutgers University,
2007.

12. Boros, E., and Ünlüyurt, T., “Diagnosing double regular systems,” Annals of Mathematics
and Artificial Intelligence, 26 (1999), 171-191.

13. Boros, E., and Ünlüyurt, T., “Sequential testing of series-parallel systems of small depth,” in
M. Laguna and J. L. Gonzáles Velarde (eds.), OR Computing Tools for the New Millennium
(Proc. Conference of the INFORMS Computing Society, Cancun, Mexico, January 5-7, 2000),
2000, 39-74.

14. Brule, J.D., Johnson, R.A., and Kletsky, E.J., “Diagnosis of equipment failures,” IRE Trans-
actions on Reliability and Quality Control, RQC-9 (1960), 23-34.

15. Butterworth, R., “Some reliability fault testing models,” Operations Research, 20 (1972),
335-343.

16. Byrka, J., “An optimal bifactor approximation algorithm for the metric uncapacitated facility

location problem,” in International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems (APPROX), 2007.

17. Chang, C.L., and Slage, J.R., “An admissible and optimal algorithm for searching and-or
graphs,” Artificial Intelligence, 2 (1971), 117-128.

18 FRED S. ROBERTS

18. Charikar, M., and Guha, S., “Improved combinatorial algorithms for facility location prob-
lems,” SIAM Journal on Computing, 34 (2005), 803-824.

19. Chipman, H.A., George, E.I., and McCulloch, R.E., “Bayesian CART model search, Journal
of the American Statistical Association, 93 (1998), 935-960.

20. Chipman, H.A., George, E.I., and McCulloch, R.E., “Extracting representative tree models
from a forest,” working paper 98-07, Department of Statistics and Actuarial Science, Univer-
sity of Waterloo, 1998.

21. Chiu, S.Y., Cox, L.A., and Sun, X., “Least-cost failure diagnosis in uncertain reliability
systems,” Reliability Engineering and System Safety, 54 (1996), 203–216.

22. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., Introduction to Algorithms, Second
Edition, MIT Press and McGraw-Hill, 2001.

23. Cox, L.A., Jr., and Qiu, Y., “Optimal inspection and repair of renewable coherent systems
with independent components and constant failure rates,” Naval Research Logistics, 41 (1994),
771-788.

24. Dantzig, G.B., “Discrete-variable extremum problems,” Operations Research, 5 (1957), 266-
288.

25. DIMACS, DIMACS Workshop on Economic Epidemiology, 2005,
http://dimacs.rutgers.edu/Workshops/EconEpid/.

26. DIMACS, DIMACS/MBI/MITACS Workshop on Economic Epidemiology, July-August 2009,

http://dimacs.rutgers.edu/Workshops/WSEconEpi/.
27. Dreyer, P.A., and Roberts, F.S., “Irreversible k-threshold processes: Graph-theoretical thresh-

old models of the spread of disease and of opinion,” Discrete Applied Mathematics, 157 (2009),
1615-1627.

28. Drezner, Z, and Hamacher, H.W., Facility Location: Applications and Theory, Springer, 2004.
29. Duffuaa, S.O., and Raouf, A., “An optimal sequence in multicharacteristics inspection,” Jour-

nal of Optimization Theory and Applications, 67 (1990), 79-87.
30. Fogarty, P., Catching the Fire on Grids, Masters Thesis, University of Vermont, 2003.
31. Garey, M.R., “Simple binary identification problems,” IEEE Transactions on Computers, 21

(1972), 588-590.
32. Garey, M.R., “Optimal task sequencing with precedence constraints,” Discrete Mathematics,

4 (1973), 37-56.
33. Geiger, D., and Barnett, J.A., “Optimal satisficing tree searches,” in AAAI91, Morgan Kauf-

mann, Anaheim, CA, 1991, 441-445.
34. Guha, S., and Khuller, S., “Greedy strikes back: Improved algorithms for facility location,”

Journal of Algorithms, 31 (1999), 228-248.
35. Halpern, J.Y., “Fault testing for a k-out-of-n system,” Operations Research, 22 (1974), 1267-

1271.
36. Hartke, S.G., Graph-theoretic Models of Spread and Competition, Ph.D. Thesis, Rutgers Uni-

versity, 2004.
37. Hartnell, B., and Li, Q., “Firefighting on trees: How bad is the greedy algorithm?”, Congressus

Numerantium, 145 (2000) 1-192.
38. Hu, T.C., and Lenard, M.L., “ Optimality of a heuristic solution for a class of knapsack

problems.” Oper. Res., 24 (1976), 193-196.
39. Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V., “A greedy facility location

algorithm analyzed using dual-fitting with factor-revealing LP,” Journal of the ACM, 50

(2003), 795-824.
40. Jain, K., Mahdian, M, and Saberi, A. , “A new greedy approach for facility location problem,”

Proceedings of the Symposium on Theory of Computing, 2002.
41. Kadane, J.B., “Quiz show problems,” Journal of Mathematical Analysis and Applications, 27

(1969), 609-623.
42. Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems, Springer, New York, 2004.
43. Klein, E., Laxminarayan, R., Smith, D.L., and Gilligan, C.A., “Economic incentives and

mathematical models of diseases, Environment and Development Economics, 12 (2007), 707-
732.

44. Kowalski, R., “Search strategies for theorem proving,” in B. Meltzer and D. Mitchie (eds.)
Machine Intelligence, 5, Edinburgh University Press. Edinburgh, 1969, 181-201.

GREEDY ALGORITHMS IN ECONOMIC EPIDEMIOLOGY 19

45. Kowalski, R., “And-or graphs, theorem proving graphs and bi-directional search,” in
B. Meltzer and D. Mitchie (eds.) Machine Intelligence, 7, Edinburgh University Press, Edin-
burgh, 1972, 167-194.

46. Kynčl, J., Lidický, B. and Vyskočil, T., “Irreversible 2-conversion set is NP-complete,”
preprint, Institute for Theoretical Computer Science, Charles University, 2009.

47. Kruskal, J.B., “On the shortest spanning subtree of a graph and the traveling salesman prob-
lem,” Proceedings of the American Mathematical Society, 7 (1956), 4850.

48. Lauritzen, S.L. and Nilsson, D., “Representing and solving decision problems with limited
information,” Management Science, 47 (2001), 1238-1251.

49. Lueker, G.S., “Two NP-complete problems in nonnegative integer programming,” Report No.
178, Computer Science Laboratory, Princeton University, 1975.

50. MacGillivray, G., and Wang, P., “On the firefighter problem,” Journal of Combinatorial
Mathematics and Combinatorial Computing, 47 (2003) 83-96.

51. Madigan, D., Mittal, S., and Roberts, F.S., “Efficient sequential decision-making algorithms
for container inspection operations,” preprint, DIMACS, Rutgers University, 2009.

52. Madigan, D., Mittal, S., and Roberts, F.S., “Sequential decision making algorithms for port
of entry inspection: Overcoming computational challenges, in G. Muresan, T. Altiok, B.
Melamed, and D. Zeng (eds.), Proceedings of IEEE International Conference on Intelligence
and Security Informatics (ISI-2007), IEEE Press, Piscataway, NJ, 2007, 1-7.

53. Magazine, M., Nemhauser, G.L., and Trotter, L.E., Jr., “When the greedy solution solves a
class of knapsack problems, “ Oper. Res., 23 (1975), 207-217.

54. Martello, S., and Toth, P., Knapsack Problems: Algorithms and Computer Implementations,
Wiley, England, 1990.

55. McKenzie, E., and Roberts, F.S., “Modeling social responses to bioterrorism involving infec-
tious agents,” Technical Report, DIMACS Center, Rutgers University, Piscataway, NJ, July
24, 2003. (Available at http://dimacs.rutgers.edu/Workshops/Modeling/.)

56. Miglio, R., and Soffritti, G., “The comparison between classification trees through proximity
measures,” Computational Statistics and Data Analysis, 45 (2004), 577-593.

57. Monma, C.L., and Sidney, J.B., “Optimal sequencing via modular decomposition: Character-
ization of sequencing functions,” Mathematics of Operations Research, 4 (1979), 215-224.

58. Mundici, D., “Functions computed by monotone boolean formulas with no repeated variables,”
Theoretical Computer Science, 66 (1989), 113-114.

59. Ng, K.L., and Raff, P., “A generalization of the firefighter problem on Z×Z,” Discrete Applied
Mathematics, 156 (2008), 730-745.

60. Nilsson, N.J., Problem-solving Methods in Artificial Intelligence, McGraw-Hill, New York,
1971.

61. Perry, B.D., and Young, A.S., “The past and future roles of epidemiology and economics in
the control of tick-borne diseases of livestock in Africa: The case of theileriosis,” Preventive
Veterinary Medicine, 25 (1995), 107-120.

62. Pisinger, D., “A minimal algorithm for the 0-1 knapsack problem,” Operations Research, 45
(1997), 758-767.

63. Pisinger, D., “Where are the hard knapsack problems?”, Computers & Operations Research,
32 (2005), 2271-2284.

64. Pohl, I., “Bi-directional search,” in B. Meltzer and D. Mitchie (eds.) Machine Intelligence, 6,
Edinburgh University Press, Edinburgh, 1971, 127-140.

65. Reinwald, L.T., and Soland, R.M., “Conversion of limited-entry decision tables to optimal
computer programs I: Minimum average processing time,” Journal of the Association for
Computing Machinery, 13 (1966), 339-358.

66. Roberts, F.S., Measurement Theory, with Applications to Decisionmaking, Utility, and the
Social Sciences, Addison-Wesley, Reading, MA, 1979. Reprinted, Cambridge University Press,
Cambridge, UK, 2009.

67. Roberts, F.S., “Meaningfulness of conclusions from combinatorial optimization,” Discr. Appl.
Math. 29 (1990), 221-241.

68. Roberts, F.S., “Limitations on conclusions using scales of measurement,” in S.M. Pollock,
M.H. Rothkopf, and A. Barnett (eds.), Operations Research and the Public Sector, Vol. 6
in Handbooks in Operations Research and Management Science, North-Holland, Amsterdam,
1994, 621-671.

20 FRED S. ROBERTS

69. Roberts, F.S., “Meaningful and meaningless statements in epidemiology and public health,”
preprint, DIMACS, Rutgers University, 2009, submitted for publication.

70. Roberts, F.S., and Tesman, B., Applied Combinatorics, 2nd ed., Chapman & Hall/CRC, 2009.
71. Salloum, S., and Breuer, M.A., “An optimum testing algorithm for some symmetric coherent

systems,” Journal of Mathematical Analysis and Applications, 101 (1984), 170–194.
72. Simon, H.A., and Kadane, J.B., “Optimal problem-solving search: All-or-none solutions,”

Artificial Intelligence, 6 (1975), 235-247.
73. Smith, D.E., “Controlling backward inference,” Artificial Intelligence, 39 (1989), 145-208.
74. Sriram, J., “KS-Solve: Local search for the knapsack problem,”

http://www.cs.dartmouth.edu/ afra/courses/cs44/winter09/project/report/sriram-
report.eps, March 14, 2009,

75. Stroud, P.D, and Saeger, K.J., “Enumeration of increasing Boolean expressions and alternative
digraph implementations for diagnostic applications,” Proceedings Volume IV, Computer,
Communication and Control Technologies 2003, 328-333.

76. Tanaka, M.M., Kumm, J., and Feldman, M.W., “Coevolution of pathogens and cultural prac-
tices: A new look at behavioral heterogeneity in epidemics,” Theoretical Population Biology,
62 (2002), 111-119.

77. Wang, P., and Moeller, S.A., “Fire control on graphs,” Journal of Combinatorial Mathematics
and Combinatorial Computing, 41 (2002) 19-34.

78. Wang, J., and Vande Vate, J., “Question asking strategies for Horn clause systems,” AMAI,
1 (1990), 359-370.

79. http://en.wikipedia.org/wiki/Knapsack problem#Greedy approximation algorithm, Septem-
ber 14, 2009.

80. Yener, A., and Rose, C., “Highly mobile users and paging: Optimal polling strategies,” IEEE
Transactions on Vehicular Technology, 47 (1998), 1251-1257.

DIMACS Center, Rutgers University, Piscataway NJ 08854 USA

E-mail address: froberts@dimacs.rutgers.edu

