ALENEX 2001 Proceedings, Springer Lecture Notes in Computer Science 2153, pp. 32-59

The Asymmetric Traveling Salesman Problem:
Algorithms, Instance Generators, and Tests

Jill Cirasella', David S. Johnson?, Lyle A. McGeoch®, and Weixiong Zhang**

! Boston Architectural Center Library
320 Newbury Street, Boston, MA 02115
jill.cirasella@the-bac.edu
2 AT&T Labs — Research, Room C239,
Florham Park, NJ 07932-0971, USA
dsj@research.att.com
3 Department of Mathematics and Computer Science
Ambherst College, Amherst, MA 01002
lam@cs.amherst.edu
4 Department of Computer Science, Washington University
Box 1045, One Brookings Drive, St. Louis, MO 63130
zhang@cs.wustl.edu

Abstract. The purpose of this paper is to provide a preliminary report
on the first broad-based experimental comparison of modern heuristics
for the asymmetric traveling salesmen problem (ATSP). There are cur-
rently three general classes of such heuristics: classical tour construction
heuristics such as Nearest Neighbor and the Greedy algorithm, local
search algorithms based on re-arranging segments of the tour, as exempli-
fied by the Kanellakis-Papadimitriou algorithm [KP80], and algorithms
based on patching together the cycles in a minimum cycle cover, the
best of which are variants on an algorithm proposed by Zhang [Zha93].
We test implementations of the main contenders from each class on a
variety of instance types, introducing a variety of new random instance
generators modeled on real-world applications of the ATSP. Among the
many tentative conclusions we reach is that no single algorithm is dom-
inant over all instance classes, although for each class the best tours are
found either by Zhang’s algorithm or an iterated variant on Kanellakis-
Papadimitriou.

1 Introduction

In the traveling salesman problem, one is given a set of N cities and for each
pair of cities ¢;, ¢; a distance d(c;, ¢j). The goal is to find a permutation 7 of the
cities that minimizes

N-1

d (Cx(i)s Cr(iv1)) + @ (Cr(n)s Cx(1))

i=1

* Supported in part by NSF grants IRI-9619554 and I11S-0196057 and DARPA Coop-
erative Agreement F30602-00-2-0531.

2 Cirasella, Johnson, McGeoch, and Zhang

Most of the research on heuristics on this problem has concentrated on the
symmetric case (the STSP), where d(c,c') = d(¢', ¢) for all pairs of cities ¢, c'.
Surveys such as [Rei94,JM97] experimentally examine the performance of a wide
variety of heuristics on reasonably wide sets of instances, and many papers study
individual heuristics in more detail. For the general not-necessarily-symmetric
case, typically referred to as the “asymmetric TSP” (ATSP), there are far fewer
publications, and none that comprehensively cover the current best approaches.
This is unfortunate, as a wide variety of ATSP applications arise in practice. In
this paper we attempt to begin a more comprehensive study of the ATSP.

The few previous studies of the ATSP that have made an attempt at cov-
ering multiple algorithms [Rep94,Zha93,Zha00,GGYZ] have had several draw-
backs. First, the classes of test instances studied have not been well-motivated
in comparison to those studied in the case of the symmetric TSP. For the latter
problem the standard testbeds are instances from TSPLIB [Rei91] and randomly-
generated two-dimensional point sets, and algorithmic performance on these in-
stances seems to correlate well with behavior in practice. For the ATSP, TSPLIB
offers fewer and smaller instances with less variety, and the most commonly stud-
ied instance classes are random distance matrices (asymmetric and symmetric)
and other classes with no plausible connection to real applications of the ATSP.

For this study, we have constructed seven new instance generators based on a
diverse set of potential ATSP applications, and we have tested a comprehensive
set of heuristics on classes produced using these generators as well as the tradi-
tional random distance matrix generators. We also have tested the algorithms
on the ATSP instances of TSPLIB and our own growing collection of instances
from actual real-world applications.

We have attempted to get some insight into how algorithmic performance
scales with instance size, at least within instance classes. To do this, we have
generated test suites of ten 100-city instances, ten 316-city instances, three 1000-
city instances, and one 3162-city instance for each class, the numbers of cities
going up by a factor of approximately v/10 at each step. At present, comprehen-
sive study of larger instances is difficult, given that the common interface between
our generators and the algorithms is a file of all N2 inter-city distances, which
would be over 450 megabytes for a 10,000-city instance. Fortunately, trends are
already apparent by the time we reach 3162 cities.

We also improve on previous studies in the breadth of the algorithms that
we cover. Current ATSP heuristics can be divided into three classes: (1) classical
tour construction heuristics such as Nearest Neighbor and the Greedy algorithm,
(2) local search algorithms based on re-arranging segments of the tour, as ex-
emplified by the Kanellakis-Papadimitriou algorithm [KP80], and (3) algorithms
based on patching together the cycles in a minimum cycle cover (which can be
computed as the solution to an Assignment Problem, i.e., by constructing a min-
imum weight perfect bipartite matching). Examples of this last class include the
algorithms proposed in [Kar79,KS85] and the O(log N) worse-case ratio “Re-
peated Assignment” algorithm of [FGM82]. We cover all three classes, including
recent improvements on the best algorithms in the last two.

The Asymmetric TSP 3

In the case of local search algorithms, previous studies have not considered
implementations that incorporate such recent innovations from the symmetric
TSP world as “don’t-look bits” and chained (iterated) local search. Nor have
they made use of the recent observation of [Glo96] that the best “2-bridge” 4-
opt move can be found in time O(N?2) rather than the naive O(N*). Together,
these two ideas can significantly shift the competitive balance.

As to cycle-patching algorithms, these now seem to be dominated by the pre-
viously little-noted “truncated depth-first branch-and-bound” heuristic of Zhang
[Zha93]. We present the first independent confirmation of the surprising results
claimed in that paper, by testing both Zhang’s own implementation and a new
one independently produced by our first author.

A final improvement over previous ATSP studies is our use of the Held-Karp
(HK) lower bound on optimal tour length [HK70,HK71,JMR96] as our standard
of comparison. Currently all we know theoretically is that this bound is within
a factor of log N of the optimal tour length when the triangle inequality holds
[Wil92]. In practice, however, this bound tends to lie within 1 or 2% of the op-
timal tour length whether or not the triangle inequality holds, as was observed
for the symmetric case in [JMR96] and as this paper’s results suggest is true for
the ATSP as well. By contrast, the Assignment Problem lower bound (AP) is
often 15% or more below the Held-Karp bound (and hence at least that far be-
low the optimal tour length). The Held-Karp bound is also a significantly more
reproducible and meaningful standard of comparison than “the best tour length
so far seen,” the standard used for example in the (otherwise well-done) study
of [Rep94]. We computed Held-Karp bounds for our instances by performing the
NP-completeness transformation from the ATSP to the STSP and then apply-
ing the publicly available Concorde code of [ABCC98], which has options for
computing the Held-Karp bound as well as the optimal solution. Where feasible,
we also applied Concorde in this way to determine the optimal tour length.

The remainder of this paper is organized as follows. In Section 2 we provide
high-level descriptions of the algorithms whose implementations we study, with
citations to the literature for more detail where appropriate. In Section 3 we
describe and motivate our instance generators and the classes we generate using
them. In Section 4, we summarize the results of our experiments and list some
our tentative conclusions. This is a preliminary report on an ongoing study. A
final section (Section 5) describes some of the additional questions we intend to
address in the process of preparing the final journal version of the paper.

2 Algorithms

In this section we briefly describe the algorithms covered in this study and our
implementations of them. Unless otherwise stated, the implementations are in
C, but several were done in C++, which may have added to their running time
overhead. In general, running time differences of a factor of two or less should not
be considered significant unless the codes come from the same implementation
family.

4 Cirasella, Johnson, McGeoch, and Zhang

2.1 Tour Construction: Nearest Neighbor and Greedy

We study randomized ATSP variants of the classical Nearest Neighbor (NN) and
Greedy (GR) algorithms. In the former one starts from a random city, and then
successively goes to the nearest as-yet-unvisited city. In our implementation of
the latter, we view the instance as a complete directed graph with edge lengths
equal to the corresponding inter-city distances. Sort the edges in order of increas-
ing length. Call an edge eligible if it can be added to the current set of chosen
edges without creating a (non-Hamiltonian) cycle or causing an in- or out-degree
to exceed one. Our algorithm works by repeatedly choosing (randomly) one of
the two shortest eligible edges until a tour is constructed. Randomization is im-
portant if these are to be used for generating starting tours for local optimization
algorithms, since a common way of using the latter is to perform a set of runs
and taking the best.

Running times for these algorithms may be inflated from what they would
be for stand-alone codes, as we are timing the implementations used in our
local search code. These start by constructing ordered lists of the 20 nearest
neighbors to and from each city for subsequent use by the local search phase of
the algorithms. The tour construction code exploits these lists where possible,
but the total time spend constructing the lists may exceed the benefit obtained.
For NN in particular, where we have an independent implementation, we appear
to be paying roughly a 50% penalty in increased running time.

2.2 Patched Cycle Cover

We implement the patching procedure described in [KS85]. We first compute a
minimum cycle cover using a weighted bipartite matching (assignment problem)
code. We then repeatedly select the two biggest cycles and combine them into the
shortest overall cycle that can be constructed by breaking one edge in each cycle
and patching together the two resulting directed paths. Despite the potentially
superquadratic time for this patching procedure, in practice the running times
for this algorithm are dominated by that for constructing the initial cycle cover
(a potentially cubic computation). This procedure provides better results than
repeatedly patching together the two shortest cycles.

A variety of alternative patching procedures are studied in [Rep94,GGYZ,GZ],
several of which, such as the “Contract-or-Patch” heuristic of [GGYZ], obtain
better results at the cost of greater running time. The increase in running time is
typically less than that required by Zhang’s algorithm (to be described below).
On the other hand, Zhang’s algorithm appears to provide tour quality that is
always at least as good and often significantly better than that reported for any
of these alternative patching procedures. In this preliminary report we wish to
concentrate on the best practical heuristics rather than the fastest, and so have
not yet added any of the alternative patching procedures to our test suite. The
simple PATCH heuristic provides an interesting data point by itself, as its tour is
the starting point for Zhang’s algorithm.

The Asymmetric TSP 5

2.3 Repeated Assignment

This algorithm was originally studied in [FGM82] and currently has the best
proven worst-case performance guarantee of any polynomial-time ATSP heuris-
tic (assuming the triangle inequality holds): Its tour lengths are at most log N
times the optimal tour length. This is not impressive in comparison to the 3/2
guarantee for the Christofides heuristic for the symmetric case, but nothing bet-
ter has been found in two decades.

The algorithm works by constructing a minimum cycle cover and then re-
peating the following until a connected graph is obtained. For each connected
component of the current graph, select a representative vertex. Then compute
a minimum cycle cover for the subgraph induced by these chosen vertices and
add that to the current graph. A connected graph will be obtained before one
has performed more than log N matchings, and each matching can be no longer
than the optimal ATSP tour which is itself a cycle cover. Thus the total edge
length for the connected graph is at most log N times the length of the optimal
tour. Note also that it must be strongly connected and all vertices must have
in-degree equal to out-degree. Thus it is Eulerian, and if one constructs an Euler
tour and follows it, shortcutting past any vertex previously encountered, one
obtains an ATSP tour that by the triangle inequality can be no longer than the
total edge length of the graph.

We have implemented two variants on this, both in C++. In the first (RA) one
simply picks the component representatives randomly and converts the Euler
tour into a ATSP tour as described. In the second (RA+) we use heuristics to find
good choices of representatives and rather than following the Euler tour, we use
a greedy heuristic to pick, for each vertex in turn that has in- and out-degree
exceeding 1, the best ways to short-cut the Euler tour so as to reduce these
degrees to 1. This latter approach improves the tours found by Christofides in
the STSP by as much as 5% [JBMR]. The combination of the two heuristics
here can provide even bigger improvements, depending on the instance class,
even though RA+ takes no more time than RA. Unfortunately, RA is often so bad
that even the substantially improved results of RA+ are not competitive with
those for PATCH. To save space we shall report results for RA+ only.

2.4 Zhang’s Algorithm and its Variants

As described in [Zha93], Zhang’s algorithm is built by truncating the computa-
tions of an AP-based branch-and-bound code that used depth first search as its
exploration strategy. One starts by computing a minimum length cycle cover M,
and determining an initial champion tour by patching as in PATCH. If this tour
is no longer that My (for instance if My was itself a tour), we halt and return
it. Otherwise, call My the initial incumbent cycle cover, and let Iy, the set of
included edges and X, the set of excluded edges, be initially empty. The variant
we study in this paper proceeds as follows.

Inductively, the incumbent cycle cover M; is the minimum length cycle cover
that contains all edges from I; and none of the edges from X;, and we assume

6 Cirasella, Johnson, McGeoch, and Zhang

that M; is shorter than the current champion tour and is not itself a tour. Let
C = {e1,e2,... e} be acycle (viewed as a set of edges) of minimum size in M;.
As pointed out in [CT80], there are k distinct ways of breaking this cycle: One
can force the deletion of ey, retain e; and force the deletion of es, retain e; and
eo and force the deletion of e3, etc. We solve a new matching problem for each
of these possibilities that is not forbidden by the requirement that all edges in I;
be included and all edges in X; be excluded. In particular, for all h, 1 < h < k
such that ep, is not in I; and X;N{e; : 1 < j < h} = ¢ we construct a minimum
cycle cover that includes all the edges in I; U {e; : 1 < j < h} and includes none
of the edges in X; U {ep}. (The exclusion of the edges in this latter set is forced
by adjusting their lengths to a value exceeding the initial champion tour length,
thus preventing their use in any subsequent viable child.) If one retains the data
structures used in the construction of M; each new minimum cycle cover can be
computed using only one augmenting path computation.

Let us call the resulting cycle covers the children of M;. Call a child viable if
its length is less than the current champion tour. If any of the viable children is
a tour and is better than the current champion, we replace the champion by the
best of these (which in turn will cause the set of viable children to shrink, since
now none of the children that are tours will be viable). If at this point there
is no viable child, we halt and return the best tour seen so far. Otherwise, let
the new incumbent M;,, be a viable child of minimum length. Patch M;,; and
if the result is better than the current champion tour, update the latter. Then
update I; and X; to reflect the sets of included and excluded edges specified
in the construction of M;;; and continue. This process must terminate after at
most N2 phases, since each phase adds at least one new edge to I; U X;, and so
we must eventually either construct a tour or obtain a graph in which no cycle
cover is shorter than the initial champion tour.

We shall refer to Zhang’s C implementation of this algorithm as ZHANGI1.
We have also studied several variants. The two most significant are ZHANG2 in
which in each phase all viable children are patched to tours to see if a new
champion can be produced, and ZHANGO, in which patching is only performed on
M. ZHANG2 produces marginally better tours than does ZHANG1, but at a typical
cost of roughly doubling the running time. ZHANGO is only slightly faster than
ZHANG1 and produces significantly worse tours. Because of space restrictions we
postpone details on these and other variants of ZHANG1 to the final report.

That final report will also contain results for an independent implementa-
tion of a variant of ZHANG1 by Cirasella, which we shall call ZHANG1-C. This
code differs from ZHANG1 in that it is implemented in C++, uses different tie-
breaking rules, and departs from the description of ZHANG1 in one detail: only
the shortest viable child is checked for tour-hood. All things being equal, this
last change cannot improve the end result even though it may lead to deeper
searches. However, because of differences in tie-breaking rules in the rest of the
code, ZHANG1-C often does find better tours than ZHANG1 — roughly about as
often as it finds worse ones. Thus future implementers should be able to obtain
similar quality tours so long as they follow the algorithm description given above

The Asymmetric TSP 7

and break ties as they see fit. If running time is an issue, however, care should
be exercised in the implementation of the algorithm to solve the AP. Because
it uses a differently implemented algorithm for solving the assignment problem,
ZHANG1-C is unfortunately a factor of 2 to 3 times slower than ZHANG1.

Note: All our implementations differ significantly from the algorithm called
“truncated branch-and-bound” and studied in [Zha00]. The latter algorithm is
allowed to backtrack if the current matching has no viable children, and will
keep running until it encounters a viable matching that is a tour or runs out
of branch-and-bound tree nodes to explore. For some of our test instances, this
latter process can degenerate into almost a full search of the branch and bound
tree, which makes this approach unsuitable for use as a “fast” heuristic.

2.5 Local Search: 3-Opt

Our local search algorithms work by first constructing a Nearest Neighbor tour,
and then trying to improve it by various forms of tour rearrangement. In 3-Opt,
the rearrangement we consider breaks the tour into three segments Sy, Sa, S3 by
deleting three edges, and then reorders the segments as S3,.S1,S3 and relinks
them to form a new tour. If the new tour is shorter, it becomes our new current
tour. This is continued until no such improvement can be found. Our imple-
mentation follows the schema described for the STSP in [JBMR] in sequentially
choosing the endpoints of the edges that will be broken. We also construct near-
neighbor lists to speed (and possibly limit) the search, and exploit “don’t-look”
bits to avoid repeating searches that are unlikely to be successful. Because of
space limitations, this preliminary report will not report on results for 3-Opt
itself, although it does cover the much more effective “iterated” algorithm based
on 3-Opt, to be described below.

2.6 Local Search: Kanellakis-Papadimitriou Variants

Note that local search algorithms that hope to do well for arbitrary ATSP in-
stances cannot reverse tour segments (as is done in many STSP heuristics),
only reorder them. Currently the ultimate “segment-reordering” algorithm is the
Kanellakis-Papadimitriou algorithm [KP80], which attempts to the extent pos-
sible to mimic the Lin-Kernighan algorithm for the STSP [LK73,JBMR,JM97].
It consists of two alternating search processes.

The first process is a variable-depth search that tries to find an improving k-
opt move for some odd k > 3 by a constrained sequential search procedure mod-
eled on that in Lin-Kernighan. As opposed to that algorithm, however, [KP80]
requires that each of the odd h-opt moves encountered along the way must have a
better “gain” than its predecessor. (In the Lin-Kernighan algorithm, the partial
moves must all have positive gain, but gain is allowed to temporarily decrease
in hopes that eventually something better will be found.)

The second process is a search for an improving 4-Opt move, for which
K&P used a potentially £2(N*) algorithm which seemed to work well in prac-
tice. The original paper on Lin-Kernighan for the STSP [LK73] also suggested

8 Cirasella, Johnson, McGeoch, and Zhang

finding 4-Opt moves of this sort as an augmentation to the sequential search
process (which was structurally unable to find them), but concluded that they
were not worth the added computation time incurred. In our implementation of
Kanellakis-Papadimitriou, we actually find the best 4-Opt move in time O(N?),
using a dynamic programming approach suggested by [Glo96]. This makes the
use of 4-Opt moves much more cost-effective; indeed they are necessary if one is
to get the best tours for a given investment of running time using a Kanellakis-
Papadimitriou variant.

Our implementation also strengthens the sequential search portion of the
original K&P: We use neighbor lists and don’t-look bits to speed the sequential
search. We also take the Lin-Kernighan approach and allow temporary decreases
in the net gain, and have what we believe are two improved versions of the search
that goes from an h-opt move to an (h+ 2)-opt move, one designed to speed the
search and one to make it more extensive. The basic structure of the algorithm
is to perform sequential searches until no improving move of this type can be
found, followed by a computation of the best 4-opt move. If this does not improve
the tour we halt. Otherwise we perform it and go back to the sequential search
phase. Full details are postponed to the final paper.

We have studied four basic variants on Kanellakis-Papadimitriou, with names
constructed as follows. We begin with KP. This is followed by a “4” if the 4-opt
search is included, and an F if the more extensive sequential search procedure
is used. For this preliminary report we concentrate on KP4 applied to Nearest
Neighbor starting tours, which provides perhaps the best tradeoff between speed,
tour quality, and robustness.

2.7 Iterated Local Search

Each of the algorithms in the previous two sections can be used as the engine
for a “chained” or “iterated” local search procedure as proposed by [MOF92]
to obtain significantly better tours. (Other ways on improving on basic local
search algorithms, such as the dynamic programming approach of [SB96] do not
seem to be as effective, although hybrids of this approach with iteration might
be worth further study.) In an “iterated” procedure, one starts by running the
basic algorithm once to obtain an initial champion tour. Then one repeats the
following process some predetermined number of times:

Apply a random 4-opt move to the current champion, and use the re-
sulting tour as the starting tour during another run of the algorithm. If
the resulting tour is better than the current champion, declare it to be
the new champion.

Typically don’t-look bits persist from one iteration to the next, which means
that only 8 vertices are initially available as starting points for searches, which
offers significant speedups.

In our implementations we choose uniformly from all 4-opt moves. Better
performance may be possible if one biases the choice toward “better” 4-opt

The Asymmetric TSP 9

moves, as is done in the implementation of chained Lin-Kernighan for the STSP
by Applegate et al. [ACR]. We leave the study of such potential improvements
to future researchers, who can use our results as a guide.

We denote the iterated version of an algorithm A by iA, and in this report will
concentrate on N-iteration iKPAF and 10N-iteration i3opt. The former is the
variant that tends to find the best tours while still running (usually) in feasible
amounts of time and the latter is typically the fastest of the variants and was
used in the code optimization application described in [YJKS97]. Searches for
the best 4-opt move in iKP4F occur only on the first and last iterations, so as to
avoid spending 2(N?) on each of the intermediate iterations.

2.8 STSP Algorithms

For the three instance classes we consider that are actually symmetric, we also
include results for the Johnson-McGeoch implementations [JBMR,JM97] of Lin-
Kernighan (LK) and N-iteration iterated Lin-Kernighan (iLK). These were ap-
plied to the symmetric representation of the instance, either as a upper-triangular
distance matrix or, where the instances were geometric, as a list of city coordi-
nates.

2.9 Lower Bound Algorithms

We have already described in the introduction how Held-Karp lower bounds HK
and optimal solutions OPT were calculated using Concorde. Here we only wish to
point out that while the times reported for HK are accurate, including both the
time to compute the NP-completeness transformation and to run Concorde on
the result, the times reported for OPT are a bit flakier, as they only include the
time to run Concorde on the already-constructed symmetric instance with an
initial upper bound taken from the better of ZHANG1 and iKP4. Thus a conser-
vative measure of the running time for OPT would require that we increase the
time reported in the table by both the time for the better of these two heuristics
and the time for HK. In most cases this is not a substantial increase.

All running times reported for OPT were measured in this way. For some
of the larger size symmetric instances, we present tour length results without
corresponding running times, as in these cases we cheated and found optimal
tour lengths by applying Concorde directly to the symmetric representation
with an upper bound supplied by iLK.

3 Instance Generators

In this section we describe and introduce shorthand names for our 12 instance
generators, all of which were written in C, as well as our set of “real-world”
instances.

10 Cirasella, Johnson, McGeoch, and Zhang

3.1 Random Asymmetric Matrices (amat)

Our random asymmetric distance matrix generator chooses each distance d(c;, ¢;)
as an independent random integer z, 0 < x < 10%. Here and in what follows,
“random” actually means pseudorandom, using an implementation of the shift
register random number generator of [Knu81].

For these instances it is known that both the optimal tour length and the
AP lower bound approach a constant (the same constant) as N — oo. The
rate of approach appears to be faster if the upper bound U on the distance
range is smaller, or if the upper bound is set to the number of cities N, a com-
mon assumption in papers about optimization algorithms for the ATSP (e.g.,
see [MP96,CDT95]). Surprisingly large instances of this type can be solved to
optimality, with [MP96] reporting the solution of a 500,000-city instance. (Inter-
estingly, the same code was unable to solve a 35-city instance from a real-world
manufacturing application.)

Needless to say, there are no known practical applications of asymmetric
random distances matrices or of variants such as ones in which d(c;, ¢;) is chosen
uniformly from the interval [0,7 + j], another popular class for optimizers. We
include this class to provide a measure of comparability with past results, and
also because it provides one of the stronger challenges to local search heuristics.

3.2 Random Asymmetric Matrices Closed under Shortest Paths
(tmat)

One of the reasons the previous class is uninteresting is the total lack of correla-
tion between distances. Note that instances of this type are unlikely to obey the
triangle inequality and so algorithms designed to exploit the triangle inequality,
such as the Repeated Assignment algorithm of [FGM82] will perform horribly
on them. A first step toward obtaining a more reasonable instance class is thus
to take a distance matrix generated by the previous generator and close it under
shortest path computation. That is, if d(c;,¢;) > d(es, cr) + d(ck,c;) then set
d(ci,cj) = d(ci,cr) + d(ck,c;) and repeat until no more changes can be made.
This is also a commonly-studied class.

3.3 Random Symmetric Matrices (smat)

For this class, d(c;, ¢;) is an independent random integer z, 0 < z < 108 for each
pair 1 <4 < j < N, and d(¢;, ¢;) is set to d(c;,¢;) when ¢ > j. Again, there is no
plausible application, but these are also commonly studied and at least provide
a ground for comparison to STSP algorithms.

3.4 Random Symmetric Matrices Closed under Shortest Paths
(tsmat)

This class consists of the instances of the previous class closed under shortest
paths so that the triangle inequality holds, another commonly studied class for
ATSP codes.

The Asymmetric TSP 11

3.5 Random Two-Dimensional Rectilinear Instances (rect)

This is our final class of symmetric instances that have traditionally been used to
test ATSP codes. It is a well-studied case of the STSP, providing useful insights
in that domain. The cities correspond to random points uniformly distributed
in a 10® by 10°® square, and the distance is computed according to the rectilinear
metric. We use the rectilinear rather than the more commonly-used Euclidean
metric as this brings the instances closer to plausible ATSP applications, as
we shall see below. In the STSP, experimental results for the Euclidean and
rectilinear metrics are roughly the same [JBMR].

3.6 Tilted Drilling Machine Instances with Additive Norm (rtilt)

These instances correspond to the following potential ATSP application. One
wishes to drill a collection of holes on a tilted surface, and the drill is moved
using two motors. The first moves the drill to its new z-coordinate, after which
the second moves it to its new y-coordinate. Because the surface is tilted, the
second motor can move faster when the y-coordinate is decreasing than when it
is increasing. Our generator places the holes uniformly in the 108 by 106 square,
and has three parameters: u, is the multiplier on |Az| that tells how much time
the first motor takes, u;} is the multiplier on |Ay| when the direction is up, and
u, is the multiplier on |Ay| when the direction is down.

Note that the previous class can be generated in this way using u, = u; =

u, = 1. For the current class, we take u, =1, u;j =2, and u, = 0. Assuming
instantaneous movement in the downward direction may not be realistic, but it
does provide a challenge to some of our heuristics, and has the interesting side
effect that for such instances the AP- and HK-bounds as well as the optimal tour
length are all exactly the same as if we had taken the symmetric instance with
Uy = u; = u,, = 1. This is because in a cycle the sum of the upward movements
is precisely balanced by the sum of the downward ones.

3.7 Tilted Drilling Machine Instances with Sup Norm (stilt)

For many drilling machines, the proper metric is the maximum of the times to
move in the z and y directions rather than the sum. For this generator, holes
are placed as before and we have the same three parameters, although now the
distance is the maximum of u,|Az| and u, |Ay| (downward motion) or u,}|Ay|
(upward motion). We choose the parameters so that downward motion is twice
as fast as horizontal motion and upward motion is half as fast. That is we set
Uy =2, uf =4, and u, = 1.

3.8 Random Euclidean Stacker Crane Instances (crane)

In the Stacker Crrane Problem one is given a collection of source-destination pairs
si,d; in a metric space where for each pair the crane must pick up an object at
location s; and deliver it to location d;. The goal is to order these tasks so as

12 Cirasella, Johnson, McGeoch, and Zhang

to minimize the time spent by the crane going between tasks, i.e., moving from
the destination of one pair to the source of the next one. This can be viewed as
an ATSP in which city ¢; corresponds to the pair s;,d; and the distance from
¢; to ¢; is the metric distance between d; and s;. (Technically, the goal may
be to find a minimum cost Hamiltonian path rather than a cycle, but that is a
minor issue.) Our generator has a single parameter u > 1, and constructs its
source-destination pairs as follows.

First, we pick the source s uniformly from the 10® by 10% square. Then
we pick two integers z and y uniformly and independently from the interval
[—10%/u,10%/u]. The destination is then the vector sum s + (z,y). To preserve
a sense of geometric locality, we want the typical destination to be closer to its
source than are all but a bounded number of other sources. Thus, noting that
for an N-city instance of this sort the expected number of sources in a 105/ VN
by 10%/v/N is 1, we generated our instances using u as approximately /n. In
particular we took v = 10,18,32,56 for N = 100, 316,1000, 3162. Preliminary
experiments suggested that if we had simply fixed u at 10, the instances would
have behaved more and more like random asymmetric ones as N got larger.

Note that these instances do not necessarily obey the triangle inequality
(since the time for traveling from source to destination is not counted), although
there are probably few large violations.

3.9 Disk Drive Instances (disk)

These instances attempt to capture some of the structure of the problem of
scheduling the read head on a computer disk, although we ignore some techni-
calities, such as the fact that tracks get shorter as one gets closer to the center
of the disk. This problem is similar to the stacker crane problem in that the files
to be read have a start position and an end position in their tracks. Sources are
generated as before, but now the destination has the same y-coordinate as the
source. To determine the destination’s z-coordinate, we generate a random inte-
ger z € [0,10%/u] and add it to the z-coordinate of the source, but do so modulo
109, thus capturing the fact that tracks can wrap around the disk. The distance
from a destination to the next source is computed based on the assumption that
the disk is spinning in the z-direction at a given rate and that the time for mov-
ing in y direction is proportional to the distance traveled (a slightly unrealistic
assumption given the need for acceleration and deceleration) at a significantly
slower rate. To get to the next source we first move to the required y-coordinate
and then wait for the spinning disk to deliver the z-coordinate to us. For our
instances in this class, we set u = 10 and assumed that y-direction motion was
10 times slower than z-direction motion. Full details are postponed to the final
paper. Note that this is another class where the triangle inequality need not be
strictly obeyed.

The Asymmetric TSP 13

3.10 Pay Phone Coin Collection Instances (coins)

These instances model the problem of collecting money from pay phones in a
grid-like city. We assume that the city is a k by &k grid of city blocks. The pay
phones are uniformly distributed over the boundaries of the blocks. Although
all the streets (except the loop surrounding the city) are two-way, the money
collector can only collect money from pay phones on the side of the street she
is currently driving on, and is not allowed to make “U-turns” either between or
at corners. This problem becomes trivial if there are so many pay phones that
most blocks have one on all four of their sides. Our class is thus generated by
letting k grow with n, in particular as the nearest integer to 10v/N.

3.11 No-Wait Flowshop Instances (shop50)

The no-wait flowship was the application that inspired the local search algorithm
of Kanellakis and Papadimitriou. In a k-processor no-wait flowshop, a job @
consists of a sequence of tasks (up,us,...,u) that must be worked on by a
fixed sequence of machines, with processing of u;1 starting on machine i + 1 as
soon as processing of u; is complete on machine i. This models situations where
for example we are processing heated materials that must not be allowed to cool
down, or where there is no storage space to hold waiting jobs.

In our generator, the task lengths are independently chosen random integers
between 0 and 1000, and the distance from job v to job @ is the minimum possible
amount be which the finish time for u; can exceed that for vy, if @ is the next job
to be started after ©. A version of this class with k£ = 5 processors was studied in
[Zha93,Zha00], but for randomly generated instances with this few processors the
AP bound essentially equals the optimal tour length, and even PATCH averaged
less than 0.1% above optimal. To create a bit more of an algorithmic challenge
in this study, we increased the number of processors to 50.

3.12 Approximate Shortest Commeon Superstring Instances (super)

A very different application of the ATSP is to the shortest common superstring
problem, where the distance from string A to string B is the length of B minus
the length of the longest prefix of B that is also a suffix of A. Unfortunately,
although this special case of the ATSP is NP-hard, real-world instances tend
to be easy [Gia] and we were unable to devise a generator that produced non-
trivial instances. We thus have modeled what appears to be a harder problem,
approzimate shortest common superstring. By this we mean that we allow the
corresponding prefixes and suffixes to only approximately match, but penalize
the mismatches. In particular, the distance from string A to string B is the
length of B minus max{j + 2k: there is a prefix of B of length j that matches
a suffix of A in all but k positions}. Our generator uses this metric applied to
random binary strings of length 20.

14 Cirasella, Johnson, McGeoch, and Zhang

3.13 Specific Instances: TSPLIB and Other Sources (realworld)

In addition to our randomly-generated instance classes, and as a sanity check
for our results on those classes, we have also tested a variety of specific “real-
world” instances from TSPLIB and other sources. Our collection includes the
27 ATSP instances currently in TSPLIB plus 20 new instances from additional
applications. The full list is given in Table 14, but here is a summary of the
sources and applications involved.

The TSPLIB instances are as follows: The four rbg instances come from a
stacker crane application. The two ft instances arose in a problem of optimally
sequencing tasks in the coloring plant of a resin production department, as de-
scribe in [FT92]. The 17 ftv instances, described in [FTV94,FT97], come from
a pharmaceutical delivery problem in downtown Bologna, with instances £tv90
through £tv160 derived from £tv170 by deleting vertices as described in [FT97].
Instances ry48p and kro124p are symmetric Euclidean instances rendered asym-
metric by slight random perturbations of their distance matrices as described
in [FT92]. Instance p43 comes from a scheduling problem arising in chemical
engineering. Instance br17 is from an unknown source.

Our additional instances come from five sources. big702 models an actual
(albeit outdated) coin collection problem and was provided to us by Bill Cook.
The three td instances came from a detailed generator constructed by Bruce
Hillyer of Lucent for the problem of scheduling reads on a specific tape drive,
based on actual timing measurements. The nine dc instances come from a table
compression application and were supplied by Adam Buchsbaum of AT&T Labs.
The two code instances came from a code optimization problem described in
[YJKS97]. The five atex instances come from a robotic motion planning problem
and were provided to us by Victor Manuel of the Carlos IIT University of Madrid.

4 Results and Conclusions

Our experiments were performed on what is today a relatively slow machine: a
Silicon Graphics Power Challenge machine with 196 Mhz MIPS R10000 proces-
sors and 1 Megabyte 2nd level caches. This machine has 7.6 Gigabytes of main
memory, shared by 31 of the above processors. Our algorithms are sequential, so
the parallelism of the machine was exploited only for performing many individ-
ual experiments at the same time. For the randomized algorithms NN, RA+, KP4,
i3opt, iKP4F, the results we report are averages over 5 or more runs for each
instance (full details in the final report).

Tables 2 through 13 present average excesses over the HK bound and running
times in user seconds for the algorithms we highlighted in Section 2 and the
testbeds we generated using each of our 12 random instance generators. In each
table, algorithms are ordered by their average tour quality for instances of size
1000. Our first conclusion is that for each of the classes, at least one of our
algorithms can find a fairly good solution quickly. See Table 1, which for each of
the classes lists the algorithm that gets the best results on 1000-city instances

The Asymmetric TSP 15

in less than 80 user seconds. Note that in all cases, at least one algorithm is able
to find tours within 9% of the HK bound within this time bound, and in all but
three cases we can get within 2.7%. There is, however, a significant variety in the
identity of the winning algorithm, with ZHANG1 the winner on five of the classes,
iKP4F in four, i3opt in two, and KP4 in one. If time is no object, iKPAF wins
out over the other local search approaches in all 12 classes. However, its running
time grows to over 19,000 seconds in the case of the 1000-city rtilt and shop50
instances, and in the latter case it is still bested by ZHANG1.

Class ||Winner|% Excess|Seconds||% HK-AP|Symmetry|Triangle
amat || ZHANG1 .04 19.8 .05 .9355 .163
tmat || ZHANG1 .00 6.4 .03 9794 | 1.000
smat iKP4F 5.26 67.0 19.70 1.0000 .163
tsmat i3opt 2.42 40.7 17.50 1.0000 | 1.000
rect iKP4F 2.20 43.5 17.16 1.0000 | 1.000
rtilt KP4 8.33 38.7 17.17 .8760 | 1.000
stilt || i3opt 4.32 75.3 14.60 9175 | 1.000
crane || iKP4F 1.27 60.8 5.21 9998 934
disk | ZHANG1 .02 16.6 .34 9990 .646
coins || iKP4F 2.66 43.7 14.00 29999 | 1.000
shop50|| ZHANG1 .03 50.7 .15 .8549 | 1.000
super || ZHANG1 21 52.9 1.17 9782 | 1.000

Table 1. For the 1000-city instances of each class, the algorithm producing the best
average tour among those that finish in less than 80 seconds, the average percent by
which that tour exceeds the HK bound, and the average running times. In addition
we list the average percentage shortfall of the AP bound from the HK bound, and the
average symmetry and triangle inequality metrics as defined in the text below.

The table also includes three instance measurements computed in hopes of
finding a parameter that correlates with algorithmic performance. The first is
the percentage by which the AP bound falls short of the HK bound. The second
is a measure of the asymmetry of the instance. For this we construct the “sym-
metrized” version I’ of an instance I with distances d'(c;,¢;) = d'(cj,¢;) set to
be the average of d(c;, ¢j) and d(cj,¢;). Our symmetry metric is the ratio of the
standard deviation of d'(c;,c;), ¢ # j, to the standard deviation for d(c;,c;),
i # j. A value of 1 implies the original graph was symmetric. Our third mea-
sure attempts to quantify the extent by which the instance violates the triangle
inequality. For each pair ¢;, ¢; of distinct cities we let d'(c;, ¢;) be the minimum
of d(c;, ¢;) and min{d(c;, c) + d(ck,c;) : 1 <k < N}. Our measure is then the
average, over all pairs ¢;,c;, of d'(c;,¢;)/d(ci,¢;). A value of 1 implies that the
instance obeys the triangle inequality.

Based on the table, there is a clear correlation between the presence of a
small HK-AP gap and the superiority of ZHANG1, but no apparent correlations
with the other two instance metrics. Note that when the HK-AP gap is close
to zero and ZHANG1 is the winner, it does extremely well, never being worse
than .21% above the HK bound. A plausible explanation is that when the AP
bound is close to the HK bound it is also close to optimal, which means that

16 Cirasella, Johnson, McGeoch, and Zhang

an optimal tour is not much longer (and hence perhaps not very different) from
a minimum cycle cover. Algorithms such as ZHANG1 (and RA+ and PATCH) that
start by computing a minimum cycle cover are thus likely to perform well, and
ZHANG1, by doing a partial branch-and-bound search for a tour, is most likely to
do best. Conversely, when the HK-AP gap is large, ZHANG1 is at a disadvantage,
for example producing tours that are more than 11% above the HK bound for
classes rect, rtilt, stilt, and coins. (See Tables 6, 7, 8, and 11.)

Here are some more tentative conclusions based on the results reported in
Tables 2 through 13 and additional experiments we have performed.

1. Simple ATSP tour construction heuristics such as Nearest Neighbor (NN) and
Greedy (GR) can perform abysmally, with NN producing tours for some classes
that are over 300% above the HK-bound. (GR can be even worse, although
PATCH is only really bad for symmetric random distance matrices.)

2. Reasonably good performance can be consistently obtained from algorithms
in both local search and cycle-patching classes: KP4 averages less than 15.5%
above HK for each instances size of all twelve of our instance classes and
ZHANG1 averages less than 13% above HK for each. Running times for both
are manageable when N < 1000, with the averages for all the 1000-city
instance classes being 8 minutes or less for both algorithms.

3. Running time (for all algorithms) can vary widely depending on instance
class. For 3162 cities, the average time for ZHANG1 ranges from 71 to roughly
22,500 seconds. For KP4 the range is a bit less extreme: from 43 to 2358.

4. For the instance classes yielding the longer running times, the growth rate
tends to be substantially more explosive for the Zhang variants than for the
local search variants, suggesting that the latter will tend to be more usable as
instance size increases significantly beyond 3162 cities. As an illustration, see
Figures 1 and 2 which chart the change in solution quality and running time
as N increases for four of our instance classes. Running times are normalized
by dividing through by N2, the actual size of the instance and hence a lower
bound on the asymptotic growth rate. Although these charts use the same
sort of dotted line to represent both local search algorithms KP4 and iKP4F,
this should be easy to disambiguate since the former always produces worse
tours in less time. Similarly, the same sort of solid line is used to represent
both AP-based algorithms PATCH and ZHANG1, with the former always pro-
ducing worse tours more quickly. By using just two types of lines, we can
more clearly distinguish between the two general types of algorithm. Figure
1 covers classes amat and super, both with small HK-AP gaps, although
for the latter the gap may be growing slightly with IV as opposed to declin-
ing toward 0 as it appears to do for classes amat, tmat, disk, and shop50.
The tour quality chart for amat is typical of these four, with both PATCH and
ZHANG1 getting better as NV increases, and both KP4 and iKP4F getting worse.
The difference for class super is that PATCH now gets worse as [N increases,
and ZHANG1 does not improve. As to running times (shown in the lower two
charts of the figure), KP4 seems to be running in roughly quadratic time (its

10.

The Asymmetric TSP 17

normalized curve is flat), whereas iKP4F is not only slower but seems to have
a slightly higher running time growth rate. ZHANG1 has the fastest growth
rate, substantially worse than quadratic, and on the super class has already
crossed over with iKP4F by 1000 cities. Figure 2 covers two classes where
the HK-AP gap is substantial, and we can see marked differences from the
previous classes.

. As might be expected, the Repeated Assignment Algorithm (RA+) performs

extremely poorly when the triangle inequality is substantially violated. It
does relatively poorly for instances with large HK-AP gaps. And it always
loses to the straightforward PATCH algorithm, even though the latter provides
no theoretical guarantee of quality.

. Although the Kanellakis-Papadimitriou algorithm was motivated by the no-

wait flowshop application, both it and its iterated variants are outperformed
on these by all the AP-based algorithms, including RA+.

. For all instances classes, optimal solutions are relatively easy to obtain for

100-city instances, the maximum average time being less than 30 minutes
per instance (less than 6 minutes for all but one class). For 7 of the 12 classes
we were able to compute optimal solutions for all our test instances with
1000 cities or less, never using more than 5 hours for any one instance. For
all classes the time for optimization was an order of magnitude worse than
the time for ZHANG1, but for three classes (tmat, disk, and shop50) it was
actually faster than that for iKP4F.

. The currently available ATSP heuristics are still not as powerful in the ATSP

context as are the best STSP heuristics in the STSP context. The above times
are far in excess of those needed for similar performance levels on standard
instance classes for the STSP. Moreover, for symmetric instances, our ATSP
codes are easily bested by ones specialized to the STSP (both in the case of
approximation and of optimization).

. It is difficult to reproduce sophisticated algorithm implementations exactly,

even if one is only interested in solution quality, not running time. Although
our two implementations of ZHANG1 differ only in their tie-breaking rules and
one rarely-invoked halting rule, the quality of the tours they produce can
differ significantly on individual instances, and for some instance classes one
or the other appears to dominate its counterpart consistently. Fortunately,
we can in essence be said to have “reproduced” the original results in that
the two implementation do produce roughly the same quality of tours overall.

The task of devising random instance generators that produce nontrivial in-
stances (ones for which none of the heuristics consistently finds the optimal
solution) is a challenge, even when one builds in structure from applications.
One reason is that without carefully constraining the randomization, it can
lead you to instances where the AP bound quickly approaches the optimal
tour length. A second reason, as confirmed by some of our real-world in-
stances, is that many applications do give rise to such easy instances.

18 Cirasella, Johnson, McGeoch, and Zhang

amat super

PERCENT EXCESS ABOVE HK BOUND

= =
T T T T T T
100 500 1000 100 500 1000
= =
S S
S 3
EJ EJ
=) =)
3 3
=27 =27
w
=
=
S}
=
=
=
=}
o8
o=
w o
N
4
=
=
I+
[}
=
o
=
S
P P
SH SH
S S
T T T T T T
100 500 1000 100 500 1000

NUMBER OF CITIES NUMBER OF CITIES

Fig. 1. Tour quality and running time as a function of the number of cities for classes
amat and super and algorithms KP4, iKP4F, PATCH, and ZHANG1. The same type lines
are used for the local search algorithms KP4 and iKP4F and for the AP-based algorithms
PATCH and ZHANG1, but the correspondence between line and algorithm should be clear:
Algorithm iKP4F is always better and slower than KP4, and algorithm ZHANG1 is always
better and slower than PATCH.

The Asymmetric TSP 19

rtilt coins
= o
54 54
— /
— Patch
w | --- KP w |
a - IKPF
=
)
o
o
x
I
w
=
o
o
< o | o
[2
w
(YN
(&}
>
w
=
=
L
[&] - -
Q R .
[¥T)
o
o] .
o o
T T T T T
100 500 1000 500 1000
o - h o
2 2
=8 S
= =
= =
8 8
= =
w
=
—
[©]
=
=
=
2
g S
(= —~A
w o o
~N
5
<<
=
o
o
=
= =
S p=g
=3 =3
I —
=Y =Y
<7 <7
= =

T T T
100 500 1000

NUMBER OF CITIES

T T
500 1000

NUMBER OF CITIES

Fig. 2. Tour quality and running time as a function of the number of cities for classes
rtilt and coins and algorithms KP4, iKP4F, PATCH, and ZHANG1. For these classes the

HK-AP gap exceeds 10%.

20 Cirasella, Johnson, McGeoch, and Zhang

Table 14 presents results for our realworld testbed. For space reasons we
restrict ourselves to reporting the three instance parameters and the results for
ZHANG1 and for iKP4F, our local search algorithm that produces the best tours.
Here we report the excess over the optimal tour length rather than over the HK
bound, as we were able to determine the optimal tour length for all 47 instances.
(In some cases this took less time than it took to run iKP4F, although dc895
took almost 20 hours and atex8 required special handling from David Applegate
of the Concorde team, as well as much more time.) Instances are grouped by
class, within classes they are ordered by number of cities, and the classes are
ordered roughly in order of increasing HK-AP gap.

A first observation is that, true to form, ZHANG1 does very well when the HK-
AP gap is close to zero, as is the case for the rbg stacker crane instances, the
td tape drive instances, and the dc table compression instances. Surprisingly,
it also does well on many instances with large HK-AP gaps, even ones with
gaps larger than 97%. Indeed, on only two instances is it worse than 3.5% above
optimal, with its worst performance being roughly 11% above optimal for £t53.
Note that ZHANG1 beats iKP4F more often than it loses, winning on 25 of the
47 instances and tying on an additional 5 (although many of its wins are by
small amounts). If one is willing to spend as much as two hours on any given
instance, however, then iKP4F is a somewhat more robust alternative. It stays
within 3.02% of optimal for all 47 instances and within 1% for all but four.

5 Future Work

This is a preliminary report on an ongoing study. Some of the directions we are
continuing to explore are the following.

1. Running Time. In order to get a more robust view of running time growth
for the various algorithms, we are in the process of repeating our experi-
ments on a variety of machines. We also intend to compute detailed counts
of some of the key operations involved in the algorithms, in hopes of spotting
correlations between these and running times.

2. Variants on Zhang’s Algorithm and on Kanellakis-Papadimitriou.
As mentioned in Section 2, there are several variants on Zhang’s algorithm
not covered in this report, and we want to study these in more detail in
hopes of determining how the various algorithmic choices affect the tradeoffs
between tour quality and running time. A preliminary result along this line
is that ZHANG2, which patches all viable children, typically does marginally
better than ZHANG1, although at a cost of doubling or tripling the overall
running time. Similar issues arise with our local search algorithms, where we
want to learn more about the impact of the 4-Opt moves in the Kanellakis-
Papadimitriou algorithm, and the differences in behavior between our two
versions of sequential search.

3. Other Patching Algorithms. We intend to more completely characterize
the advantages of Zhang’s algorithm versus the best of the simpler patching
algorithms by performing more head-to-head comparisons.

The Asymmetric TSP 21

4. Starting Tours for Local Search. This is an important issue. We chose
to use Nearest Neighbor starting tours as they provided the most robust
results across all classes. However, for several classes we could have obtained
much better results for KP4 and iKP4F had we used Greedy or PATCH starts,
and for those classes where ZHANG1 is best but still leaves some room for
improvement, it is natural to consider using ZHANG1 as our starting heuristic.
Preliminary results tell us that there is no universal best starting algorithm,
and moreover that the ranking of heuristics as to the quality of their tours is
for many instance classes quite different from their ranking as to the quality
of the tours produced from them by local optimization.

5. More, and More Portable, Generators. Our current instance generators
use a random number generator that does not produce the same results
on all machines. For the final paper we plan to rerun our experiments on
new test suites created using a truly portable random number generator.
This will help confirm the independence of our conclusions from the random
number generator used and will also provide us with a testbed that can be
distributed to others by simply providing the generators, seeds, and other
input parameters. We also hope to add more instance classes and grow our
realworld test set.

References

[ABCC98] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. On the solution of travel-
ing salesman problems. Doc. Mathematica J. der Deutschen Mathematiker-
Vereinigung, ICM II1:645-656, 1998. The Concorde code is available from
the website http://www.keck.caam.rice.edu/concorde.html.

[ACR] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large
traveling salesman problems. To appear. A postscript draft is currently
available from the website http://wuw.caam.rice.edu/~bico/.

[CDT95] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale,
asymmetric traveling salesman problems. ACM Trans. Mathematical Soft-
ware, 21(4):394-409, 1995.

[CT80] G. Carpaneto and P. Toth. Some new branching and bounding criteria for
the asymmetric traveling salesman problem. Management Science, 26:736—
743, 1980.

[FGM82] A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks,
12:23-39, 1982.

[F'T92] M. Fischetti and P. Toth. An additive bounding procedure for the asym-
metric travelling salesman problem. Math. Programming A, 53:173-197,
1992.

[F'T97] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling
salesman problem. Management Sci., 43:1520-1536, 1997.

[FTV94] M. Fischetti, P. Toth, and D. Vigo. A branch and bound algorithm for the
capacitated vehicle routing problem on directed graphs. Operations Res.,
42:846-859, 1994.

[GGYZ] F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuristics for
the asymmetric TSP. European J. Operations Research. to appear.

22 Cirasella, Johnson, McGeoch, and Zhang

[Gia]
[Glo96]

(GZ]
[HK70]
[HK71]

[JBMR]

[IM97]

[TMRO6]

[Kar79]

[Knu81]

[KP80]

[KS85]

[LK73]

[MOF92]

[MP96]

[Rei91]

[Rei94]

[Rep94]

[SB96]

R. Giancarlo. Personal communication, September 2000.

F. Glover. Finding a best traveling salesman 4-opt move in the same time
as a best 2-opt move. J. Heuristics, 2(2):169-179, 1996.

G. Gutin and A. Zverovich. Evaluation of the contract-or-patch heuristic
for the asymmetric TSP. Manuscript, 2000.

M. Held and R. M. Karp. The traveling salesman problem and minimum
spanning trees. Operations Res., 18:1138-1162, 1970.

M. Held and R. M. Karp. The traveling salesman problem and minimum
spanning trees: Part II. Math. Prog., 1:6-25, 1971.

D. S. Johnson, J. L. Bentley, L. A. McGeoch, and E. E. Rothberg. Near-
Optimal Solutions to Very Large Traveling Salesman Problems. Monograph,
to appear.

D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors,
Local Search in Combinatorial Optimization, pages 215-310. John Wiley and
Sons, Ltd., Chichester, 1997.

D. S. Johnson, L. A. McGeoch, and E. E. Rothberg. Asymptotic experi-
mental analysis for the Held-Karp traveling salesman bound. In Proc. 7th
Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 341-350. Society for
Industrial and Applied Mathematics, Philadelphia, 1996.

R. M. Karp. A patching algorithm for the nonsymmetric traveling-salesman
problem. SIAM J. Comput., 8(4):561-573, 1979.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (2nd Edition). Addison-Wesley, Reading, MA, 1981. See pages
171-172.

P. C. Kanellakis and C. H. Papadimitriou. Local search for the asymmetric
traveling salesman problem. Oper. Res., 28(5):1066-1099, 1980.

R. M. Karp and J. M. Steele. Probabilistic analysis of heuristics. In E. L.
Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B Shmoys, editors,
The Traveling Salesman Problem, pages 181-205. John Wiley and Sons,
Chichester, 1985.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the trav-
eling salesman problem. Operations Res., 21:498-516, 1973.

O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the
TSP incorporating local search heuristics. Operations Res. Lett., 11:219-224,
1992.

D. L. Miller and J. F. Pekny. Exact solution of large asymmetric traveling
salesman problems. Science, 251:754-761, 15 September 1996.

G. Reinelt. TSPLIB - A traveling salesman problem library.
ORSA J. Comput., 3(4):376-384, 1991. The TSPLIB website is
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/.
G. Reinelt. The Traveling Salesman: Computational Solutions of TSP Ap-
plications. LNCS 840. Springer-Verlag, Berlin, 1994.

B. W. Repetto. Upper and Lower Bounding Procedures for the Asymmetric
Traveling Salesman Problem. PhD thesis, Graduate School of Industrial
Administration, Carnegie-Mellon University, 1994.

N. Simonetti and E. Balas. Implementation of a linear time algorithm for
certain generalized traveling salesman problems. In Integer Programming
and Combinatorial Optimization: Proc. 5th Int. IPCO Conference, LNCS
840, pages 316-329, Berlin, 1996. Springer-Verlag.

The Asymmetric TSP 23

[Wil92] D. Williamson. Analysis of the Held-Karp lower bound for the asymmetric
TSP. Operations Res. Lett., 12:83-88, 1992.

[YJKS97] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith. Near-optimal
intraprocedural branch alignment. In Proceedings 1997 Symp. on Program-
ming Languages, Design, and Implementation, pages 183-193. ACM, 1997.

[Zha93] W. Zhang. Truncated branch-and-bound: A case study on the asymmet-
ric TSP. In Proc. of AAAI 1998 Spring Symposium on AI and NP-Hard
Problems, pages 160-166, Stanford, CA, 1993.

[Zha00] 'W. Zhang. Depth-first branch-and-bound versus local search: A case study.
In Proc. 17th National Conf. on Artificial Intelligence (AAAI-2000), pages
930-935, Austin, TX, 2000.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
NN 195.23 253.97 318.79 384.90 .05 .46 4.8 50
RA+ 86.60 100.61 110.38 134.14 .10 1.25 26.3 621
i30PT 5.10 13.27 27.12 45.53 .75 4.67 36.9 273
KP4 5.82 6.95 8.99 11.51 .06 .65 6.0 63
PATCH | 10.95 6.50 2.66 1.88 .04 .40 4.8 42
iKP4F .56 .74 1.29 2.43 .51 5.75 76.7 1146
ZHANG1 .97 .16 .04 .04 .06 .84 19.8 694
OPT .29 .08 .02 —124.73 194.58 1013.6 —
HK .00 .00 .00 .00 | 1.05 7.80 95.0 1650
MATCH -0.65 -0.29 -0.04 -0.04 .04 .40 4.6 40

Table 2. Results for class amat: Random asymmetric instances.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 | 100 316 1000 3162
NN 38.20 37.10 37.55 36.66 | .05 44 4.4 46
KP4 1.41 2.23 3.09 4.03 17 1.16 10.9 115
i30PT .30 .85 1.63 2.25|1.53 7.08 40.1 231
RA+ 4.88 3.10 1.55 46 | .09 1.13 20.2 653

iKP4F .09 .14 41 .65 | 8.87 56.17 489.4 4538
PATCH .84 .64 A7 .00 | .04 .39 4.7 68
ZHANG1 .06 .01 .00 00| .05 .49 6.4 71
OPT .03 .00 .00 -16.16 20.29 919 -
HK .00 .00 .00 .00)115 8.03 113.3 2271
MATCH | -0.34 -0.16 -0.03 00| .04 .39 4.6 62

Table 3. Results for class tmat: amat instances closed under the shortest paths.

24 Cirasella, Johnson, McGeoch, and Zhang

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 693.90 2263.56 7217.91 24010.30 .10 1.21 10.0 703
PATCH | 126.39 237.59 448.48 894.17 .04 .40 4.9 64
NN 139.28 181.18 233.10 307.11 .05 .46 4.8 50
i30PT 8.43 15.57 25.55 39.84 .75 4.73 36.2 285
KP4 10.59 11.50 13.13 15.31 .06 .64 5.8 62
ZHANG1 5.52 5.84 5.97 5.67 12 4.01 200.4 9661
iKP4F 3.98 4.34 5.26 6.21 .52 5.44 67.0 1007
LK 1.72 2.22 3.43 4.68 .18 1.75 11.0 29
iLK .15 42 1.17 2.35 .45 5.22 31.4 258
OPT .10 .04 .01 —116.30 378.09 1866.5 -
HK .00 .00 .00 .00 1.44 12.90 2674 7174
MATCH | -19.83 -20.73 -19.66 -20.21 .04 .39 4.6 56

Table 4. Results for class smat: Random symmetric instances.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 32.75 4097 47.35 49.44 .10 1.22 26.3 557
PATCH 14.46 19.37 23.68 26.42 .04 .36 3.7 45
NN 23.64 23.18 22.83 22.15 .04 44 4.4 47
KP4 3.12 3.71 4.15 4.71 .23 1.43 10.9 122

ZHANG1| 3.49 4.06 3.38 3.51 A7 6.82 373.2 16347
i30PT 1.12 1.88 2.42 3.18 | 2.05 8.45 40.7 244

LK .62 1.17 1.50 2.09 41 2.68 10.8 42
iKP4F 91 1.19 1.44 1.98 | 20.69 88.26 479.1 5047
ilK 12 .27 44 85| 8.12 4219 135.7 696
OPT .10 12 A1 - 128.00 549.04 12630.3 -
HK .00 .00 .00 00| 1.83 15.15 217.8 885
MATCH | -17.97 -19.00 -17.50 -17.92 .04 .35 3.4 37

Table 5. Results for class tsmat: smat instances closed under shortest paths.

The Asymmetric TSP 25

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 64.02 73.93 78.90 85.72 10 114 20.2 494
NN 26.39 27.51 26.11 26.55 .06 A7 4.9 51

PATCH | 17.90 18.73 18.46 19.39 .04 37 3.9 45
ZHANG1| 9.75 12.40 12.23 12.19 A8 7.78 466.4 22322
KP4 5.11 5.06 5.00 5.17 .06 .55 5.2 53
i30PT 2.02 2.57 2.66 3.09 66 3.95 29.6 292
iKP4F 1.75 2.16 2.20 2.32 48 4.41 435 483

LK 1.32 1.55 1.77 1.92 .07 .26 .7 1
iLK .69 .72 .79 .82 42 247 178 109
OPT .68 .67 .68 —194.82 - - -
HK .00 .00 .00 .00 1.93 14.51 205.0 1041

MATCH | -20.42 -17.75 -17.17 -16.84 .04 .36 3.6 37

Table 6. Results for class rect: Random 2-dimensional rectilinear instances. Optima,
for 316- and 1000-city instances computed by symmetric code.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 61.95 73.47 78.27 82.03 13 1.90 49.9 1424
NN 28.47 28.28 27.52 24.60 .06 47 5.0 51
PATCH 17.03 1891 18.38 19.39 .05 .50 7.4 127
i30PT 1.69 4.22 12,97 18.41 4.61 43.59 254.3 967
ZHANG1 9.82 12.20 11.81 11.45 .19 7.86 460.8 22511
KP4 6.06 7.35 8.33 9.68 41 3.87 38.7 312
iKP4F 1.80 4.12 7.29 8.89 | 38.90 1183.94 19209.0 145329
OPT .68 .67 .68 -1 152.05 - - -
HK .00 .00 .00 .00 2.06 15.98 226.6 875
MATCH | -20.42 -17.75 -17.17 -16.84 .05 .49 7.1 116

Table 7. Results for class rtilt: Tilted drilling machine instances with additive norm.
Optima for 316- and 1000-city instances computed by symmetric code applied to equiv-
alent symmetric instances.

26 Cirasella, Johnson, McGeoch, and Zhang

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 55.79 62.76 65.03 71.48 .10 1.10 22.1 566
NN 30.31 30.56 27.62 24.42 .05 .54 4.9 112
PATCH | 23.33 22.79 23.18 24.41 .04 44 5.6 69
ZHANG1| 10.75 13.99 12.66 12.86 17 7.39 423.7 9817
KP4 8.57 8.79 8.80 8.15 .14 1.01 7.7 73

i30PT 3.29 3.95 4.32 4.28 1.38 9.38 75.3 601
iKP4F 3.00 3.54 3.96 4.13 7.17 161.40 4082.4 72539

OPT 1.86 - - — | 1647.46 - - -
HK .00 .00 .00 .00 1.86 15.53 1745 864
MATCH | -18.41 -14.98 -14.65 -14.04 .04 42 5.2 62

Table 8. Results for class stilt: Tilted drilling machine instances with sup norm.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 40.80 50.33 53.60 54.91 .10 1.20 181 590
NN 40.72 41.66 43.88 43.18 .05 .46 4.8 50
PATCH 9.40 10.18 9.45 8.24 .04 .38 4.0 53
KP4 4.58 4.45 4.78 4.26 .07 .57 5.3 52
ZHANG1| 4.36 4.29 4.05 4.10 .10 3.52 172.6 7453
i30PT 1.98 2.27 1.95 2.12 .67 3.99 31.2 270
iKP4F | 1.46 1.79 1.27 1.36 .66 6.33 60.8 696
OPT 1.21 1.30 — — | 216.54 11290.42 - —
HK .00 .00 .00 .00 1.43 12.80 925.2 1569
MATCH | -7.19 -6.34 -5.21 -4.43 .04 .38 4.0 44

Table 9. Results for class crane: Random Euclidean stacker crane instances.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
NN 96.24 102.54 115.51 161.99 .06 .48 5.0 54
RA+ 86.12 58.27 42.45 25.32 11 1.66 48.9 1544
KP4 2.99 3.81 5.81 9.17 .07 .99 21.2 760
i30PT 97 2.32 3.89 5.29 .73 5.66 62.4 687
iKP4F .56 .48 .96 1.77 .64 22.62 1240.9 61655
PATCH | 9.40 2.35 .88 .30 .04 47 7.5 176
ZHANG1| 1.51 27 .02 .01 .08 1.00 16.6 247
OPT .24 .06 .01 —-122.66 70.99 398.2 -
HK .00 .00 .00 .00 1.27 8.71 139.1 4527
MATCH | -2.28 -0.71 -0.34 -0.11 .04 .46 7.2 168

Table 10. Results for class disk: Disk drive instances.

The Asymmetric TSP

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
RA+ 52.74 64.95 68.78 71.20 .09 1.00 16.3 329
NN 26.08 26.71 26.80 25.60 .05 42 4.4 46
PATCH 16.48 16.97 17.45 18.20 .04 .32 3.5 41
ZHANG1 8.20 11.03 11.14 11.42 .14 6.88 435.9 22547
KP4 5.74 6.59 6.15 6.34 .06 .49 4.7 48
i30PT 2.98 3.37 3.48 3.83 .64 3.71 283 257
iKP4F 2.71 2.99 2.66 2.87 .52 4.23 43.7 542
OPT 1.05 1.49 - — | 356.69 67943.26 - -
HK .00 .00 .00 .00 1.66 13.75 141.9 924
MATCH | -15.04 -13.60 -13.96 -13.09 .03 31 3.1 33

Table 11. Results for class coins: Pay phone coin collection instances.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
NN 16.97 14.65 13.29 11.87 .04 42 6.4 46
i30PT 49 4.02 9.23 10.76 | 14.85 67.91 266.5 940
KP4 1.57 2.92 3.88 4.54 3.12 31.43 306.1 2358
iKP4F 49 236 3.66 4.51|321.70 2853.11 19283.1 74617
RA+ 4.77 277 169 1.05 .15 3.03 74.4 2589
PATCH 1.15 .59 .39 .24 .05 .86 21.7 611
ZHANG1 .20 .08 .03 .01 .09 1.83 50.7 1079
OPT .05 .02 .01 - | 82.03 565.69 2638.2 -
HK .00 .00 .00 .00 2.29 18.22 269.9 3710
MATCH | -0.50 -0.22 -0.15 -0.07 .05 .85 21.6 590

Table 12. Results for class shop50: No-wait flowshop instances.

Percent above HK Time in Seconds
Alg 100 316 1000 3162 100 316 1000 3162
NN 8.57 8.98 9.75 10.62 .04 .38 3.9 43
RA+ 4.24 5.22 6.59 834 .02 .84 54 393
PATCH 1.86 2.84 3.99 6.22 .03 .34 4.5 67
KP4 1.06 1.29 1.59 2.10 .05 .44 4.4 45
i30PT .28 61 1.06 1.88 .59 3.19 20.2 138
iKP4F .13 .15 .28 .52 .26 2.40 26.5 323
ZHANG1 27 17 21 .43 .06 1.10 52.9 2334
OPT .05 .03 .01 —110.74 130.40 4822.2 —
HK .00 .00 .00 .00 1.02 8.14 104.6 2112
MATCH | -1.04 -1.02 -1.17 -1.61 .03 .33 4.3 61

27

Table 13. Results for class super: Approximate shortest common superstring in-

stances.

28 Cirasella, Johnson, McGeoch, and Zhang

% % Above Opt | Time in Seconds
Class N |HK-AP|Symm.|Triangle|/iKP4F ZHANGI1| iKP4F ZHANGI
rbg358 358 .00 | .9517 .5749 .79 .00 | 342.26 .20
rbg323 323 .00 | .9570 .6108 .30 .00 | 414.53 17
rbg403 403 .00 | .9505 5511 11 .00 | 743.99 .54
rbg443 443 .00 | .9507 .5642 .09 .00 | 908.12 .54
big702 702 .00 | .9888 | 1.0000 .21 .00 | 1136.52 .61
td100.1 101 .00 | .9908 .9999 .00 .00 39.90 .01
td316.10 317 .00 | .9910 .9998 .00 .00 | 1950.07 12
td1000.20 1001 .00 | .9904 .9994 .00 .00 | 720.57 .88
dc112 112 .87 | .9996 | 1.0000 31 13| 904.31 .20
dc126 126 3.78 | .9999 .9983 .64 .21 | 1533.84 .25
dcl134 134 .36 | .9973 | 1.0000 .55 A8 | 714.98 .23
dcl76 176 .81 | .9982 | 1.0000 .59 .09 | 1448.29 31
dc188 188 1.22 | 19997 | 1.0000 .52 .23 | 674.15 .28
dcb63 563 .33 | .9967 | 1.0000 .78 .09 | 4379.74 19.86
dc849 849 .09 | .9947 | 1.0000 .61 .00 | 5666.96 51.06
dc895 895 .68 | .9994 | 1.0000 .58 .42 | 7214.80 111.65
dc932 932 2.48 | .9999 .9998 27 .13 | 4611.56 85.68
codel198 198 .09 | .7071 9776 .00 .00 | 114.24 .03
code253 253 17.50 | .7071 .9402 .00 .28 | 267.14 .30
krol24p 100 5.61 | .9992 9724 1.28 3.29 .34 .06
ry48p 48 | 12.40 | .9994 .9849 1.92 2.17 .16 .01
ft53 53 | 14.11 | .8739 | 1.0000 .01 10.96 7.99 .02
ft70 70 1.75 | .9573 | 1.0000 .02 47 4.83 .02
ftv33 34 7.85 | .9838 | 1.0000 3.02 3.50 A1 .01
ftv35s 36 5.24 | .9823 | 1.0000 .03 1.09 11 .00
ftv38 39 5.04 | .9832 | 1.0000 .00 1.05 12 .00
ftv44 45 4.03 | .9850 | 1.0000 1.30 .00 12 .00
ftv47 48 5.563 | .9832 | 1.0000 .49 .68 17 .01
ftvbh 56 9.41 | .9853 | 1.0000 .00 .75 .25 .02
ftv64 65 4.79 | .9850 | 1.0000 .33 .00 37 .01
ftv70 71 7.49 | .9844 | 1.0000 .08 .00 .30 .03
ftv90 91 5.77 | .9849 | 1.0000 .08 .44 A7 .01
ftv100 101 5.52 | .9873 | 1.0000 13 .00 .62 .02
ftv110 111 4.18 | .9872 | 1.0000 12 .00 1.00 .04
ftv120 121 4.93 | .9877 | 1.0000 .33 .00 1.70 .05
ftv130 131 3.61 | .9884 | 1.0000 27 .00 1.52 .08
ftv140 141 4.12 | .9883 | 1.0000 .21 .00 1.23 .04
ftv150 151 3.17 | .9887 | 1.0000 .40 .00 1.18 .04
ftv160 161 3.29 | .9890 | 1.0000 .24 11 1.43 .07
ftv170 171 3.10 | .9890 | 1.0000 .45 .36 1.52 .10
brl7 17 | 100.00 | .9999 .8474 .00 .00 11 .01
p43 43 | 97.36 | .7565 .8965 .01 .05 23.81 .02
atex1 16 | 98.23 | .8569 | 1.0000 .44 6.07 .07 .00
atex3 32 | 98.37 | .9498 | 1.0000 .03 41 1.69 .02
atex4 48 | 96.92 | .9567 | 1.0000 .00 .12 2.22 .02
atexb 72 | 97.49 | .9629 | 1.0000 .15 .38 7.77 .06
atex8 600 | 97.69 | .9895 | 1.0000 .99 2.60 | 2112.70 47.43

Table 14. Results for realworld test instances.

